Skip to main content
Log in

Multi-carrier Visible Light Communication System Using Enhanced Sub-carrier Index Modulation and Discrete Wavelet Transform

  • Published:
Wireless Personal Communications Aims and scope Submit manuscript

Abstract

This work is aimed at providing a novel design of the Visible Light Communication (VLC) system that uses the Multi-Carrier Code-Division Multiple Access (MC-CDMA) technique to send and receive data through intensity-modulated/direct detected (IM/DD) VLC channel. The state-of-the-art framework of Enhanced Sub-Carrier Index Modulation (ESIM) is utilized to reduce the inherent peak-to-average power ratio (PAPR) in Orthogonal Frequency Division Multiplexing. Additionally, the use of cyclic prefix is omitted through the Discrete Wavelet Transform in the current system. Hence, the performance of the system is optimized in terms of PAPR, Bit Error Rate (BER), and data rate. The work presents the closed-form BER expressions for both conventional and proposed techniques in line-of-sight VLC channel. Correspondingly, the simulation programs are also executed to compared the proposed ESIM based WT-MC-CDMA system with both existing systems followed by an analysis of the results. Simulation results show the superior performance of the proposed system compared to existing systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Mumtaz, S., Bo, A., Al-Dulaimi, A., & Tsang, K. F. (2018). Guest editorial 5G and beyond mobile technologies and applications for industrial IoT (IIoT). IEEE Transactions on Industrial Informatics, 14(6), 2588–2591.

    Article  Google Scholar 

  2. Sharma, B., Saini, R. K., Singh, A., & Singh, K. K. (2020). Deep reinforcement learning for wireless network. Machine Learning and Cognitive Computing for Mobile Communications and Wireless Networks., 17, 51–71.

    Google Scholar 

  3. Yan, P., Choudhury, S., Al-Turjman, F., & Al-Oqily, I. (2020). An energy-efficient topology control algorithm for optimizing the lifetime of wireless ad-hoc IoT networks in 5G and B5G. Computer Communications, 159, 83–96.

    Article  Google Scholar 

  4. Tabrizi, H. O., & Al-Turjman, F. (2020). AI for dynamic packet size optimization of batteryless IoT nodes: A case study for wireless body area sensor networks. Neural Computing and Applications, 7, 1–2.

    Google Scholar 

  5. Saadi, M., & Wuttisittikulkij, L. (2019). Visible light communication-the journey so far. Journal of Optical Communications, 40(4), 447–453.

    Article  Google Scholar 

  6. O’Brien, D., Parry, G., & Stavrinou, P. (2007). Optical hotspots speed up the wireless communication. Nature Photonics, 1(5), 245.

    Article  Google Scholar 

  7. Randel, S., Sierra, A., Mumtaz, S., Tulino, A., Ryf, R., Winzer, P. J., Schmidt, C., & Essiambre, R. J. (2012). Adaptive MIMO signal processing for mode-division multiplexing. In OFC/NFOEC. IEEE (pp. 1–3).

  8. Ma, J., Li, K., Tan, L., Yu, S., & Cao, Y. (2016). Exact error rate analysis of free-space optical communications with spatial diversity over gamma-gamma atmospheric turbulence. Journal of Modern Optics, 63(3), 252–260.

    Article  Google Scholar 

  9. Niaz, M. T., Imdad, F., Kim, S., & Kim, H. S. (2016). Deployment methods of visible light communication lights for energy-efficient buildings. Optical Engineering, 55(10), 106113.

    Article  Google Scholar 

  10. Wang, C. X., Haider, F., Gao, X., You, X. H., Yang, Y., Yuan, D., et al. (2014). Cellular architecture and key technologies for 5G wireless communication networks. IEEE Communications Magazine, 52(2), 122–130.

    Article  Google Scholar 

  11. Qiu, Y., Chen, S., Chen, H. H., & Meng, W. (2017). Visible light communications based on CDMA technology. IEEE Wireless Communications, 25(2), 178–185.

    Article  Google Scholar 

  12. Shoreh, M. H., Fallahpour, A., & Salehi, J. A. (2015). Design concepts and performance analysis of multicarrier CDMA for indoor visible light communications. Journal of Optical Communications and Networking, 7(6), 554–562.

    Article  Google Scholar 

  13. McCormick, A. C., & Al-Susa, E. (2002). Multicarrier CDMA for future generation mobile communication. Electronics and Communication Engineering Journal, 14(2), 52–60.

    Article  Google Scholar 

  14. Liao, H., Zhou, Z., Zhao, X., Zhang, L., Mumtaz, S., Jolfaei, A., et al. (2019). Learning-based context-aware resource allocation for edge-computing-empowered industrial IoT. IEEE Internet of Things Journal, 7(5), 4260–4277.

    Article  Google Scholar 

  15. Priyanjali, K. S., & Ramanjaneyulu, B. S. (2017). Performance of MC-CDMA system with various orthogonal spreading codes in a multipath Rayleigh fading channel. In: International conference on smart technologies and management for computing, communication, controls, energy, and materials (ICSTM), IEEE (pp. 309–312).

  16. Soundararajan, R., Kumar, S. R., Gayathri, N., & Al-Turjman, F. (2020). Skyline query optimization for preferable product selection and recommendation system. Wireless Personal Communications., 18, 1–8.

    Google Scholar 

  17. Kondo, S., & Milstein, B. (1996). Performance of multicarrier DS CDMA systems. IEEE Transactions on Communications, 44(2), 238–246.

    Article  Google Scholar 

  18. Taher, M., Singh, M., Ismail, M., Samad, S. A., & Islam, M. T. (2013). Sliding the SLM-technique to reduce the non-linear distortion in OFDM systems. Elektronika ir Elektrotechnika, 19(5), 103–111.

    Article  Google Scholar 

  19. Bolcskei, H., Duhamel, P., & Hleiss, R. (2001). A subspace-based approach to blind channel identification in pulse shaping OFDM/OQAM systems. IEEE Transactions on Signal Processing, 49(7), 1594–1598.

    Article  Google Scholar 

  20. Yu, J. L., & Chen, C. H. (2008). A low-complexity block linear smoothing channel estimation for SIMO-OFDM systems without cyclic prefix. IEICE Transactions on Communications, 91(4), 1076–1083.

    Article  Google Scholar 

  21. Meng, Y., Wang, J., Zhu, J., & Wang, H. (2008). Blind multiuser detection using the subspace-based linearly constrained LSCMA. Signal Processing, 88(9), 2246–2253.

    Article  MATH  Google Scholar 

  22. Wu, X., Yin, Q., Zhang, H., & Deng, K. (2002). Time-domain multiuser detection for MC-CDMA systems without cyclic prefix. In International conference on communications, ICC 2002, IEEE (vol. 2, pp. 921–925).

  23. Daly, D., Heneghan, C., & Fagan, A. D. (2004). Minimum mean-squared error impulse response shortening for discrete multitone transceivers. IEEE Transactions on Signal Processing, 52(1), 301–306.

    Article  MathSciNet  MATH  Google Scholar 

  24. Jones, A. E., Wilkinson, T. A., & Barton, S. (1994). Block coding scheme for reduction of peak to mean envelope power ratio of multicarrier transmission schemes. Electronics Letters, 30(25), 2098–2099.

    Article  Google Scholar 

  25. Saeedi, H., Sharif, M., & Marvasti, F. (2002). Clipping noise cancellation in OFDM systems using oversampled signal reconstruction. IEEE Communications Letters, 6(2), 73–75.

    Article  Google Scholar 

  26. Muller, S. H., & Huber, J. B. (1997). OFDM with reduced peak-to-average power ratio by optimum combination of partial transmit sequences. Electronics Letters, 33(5), 368–369.

    Article  Google Scholar 

  27. Bauml, R. W., Fischer, R. F., & Huber, J. B. (1996). Reducing the peak-to-average power ratio of multicarrier modulation by selected mapping. Electronics Letters, 32(22), 2056–2057.

    Article  Google Scholar 

  28. Zhang, H., Zhang, J., & Qiu, K. (2014). Performance comparison of wavelet packet transform-based and conventional coherent optical OFDM transmission system. Optik, 125(11), 2647–2651.

    Article  Google Scholar 

  29. Ahsan, M., & Asif, H. M. (2017). ESIM-OFDM-based transceiver design of a visible light communication system. International Journal of Communication Systems, 30(8), e3175.

    Article  Google Scholar 

  30. Dang, J., Wu, L., & Zhang, Z. (2017). OFDM systems for optical communication with intensity modulation and direct detection. Optical Fiber and Wireless Communications, 85, 111–117.

    Google Scholar 

  31. Dissanayake, S. D., & Armstrong, J. (2013). Comparison of ACO-OFDM, DCO-OFDM and ADO-OFDM in IM/DD systems. Journal of Lightwave Technology, 31(7), 1063–1072.

    Article  Google Scholar 

  32. Khalid, A., & Asif, H. M. (2018). OCDMA and OSTBC based VLC transceiver design using NI cDAQ. Photonic Network Communications, 35(1), 97–108.

    Article  Google Scholar 

  33. Burrus, C. S., Gopinath, R. A., Guo, H., Odegard, J. E., & Selesnick, I. W. (1998). Introduction to wavelets and wavelet transforms: A primer (p. 1). New Jersey: Prentice Hall.

    Google Scholar 

  34. Lakshmanan, M. K., & Nikookar, H. (2006). A review of wavelets for digital wireless communication. Wireless Personal Communications, 37(3–4), 387–420.

    Article  Google Scholar 

  35. Kaiser, G. (2010). A friendly guide to wavelets. Berlin: Springer Science & Business Media.

    MATH  Google Scholar 

  36. Polikar, R. (1998). Multi-resolution analysis: The discrete wavelet transform, the wavelet tutorial part IV. Rowan University, College of Engineering Web Servers (p. 10).

  37. Baig, S., Asif, H. M., Umer, T., Mumtaz, S., Shafiq, M., & Choi, J. G. (2018). High data rate discrete wavelet transform-based PLC-VLC design for 5G communication systems. IEEE Access, 6, 52490–52499.

    Article  Google Scholar 

  38. Li, A., Shieh, W., & Tucker, R. S. (2010). Wavelet packet transform-based OFDM for optical communications. Journal of Lightwave Technology., 28(24), 3519–3528.

    Google Scholar 

  39. Guillen, D., Idarraga-Ospina, G., & Cortes, C. (2016). A new adaptive mother wavelet for electromagnetic transient analysis. Journal of Electrical Engineering, 67(1), 48–55.

    Article  Google Scholar 

  40. Khan, A., Arif, A., Nawaz, T., & Baig, S. (2017). Walsh Hadamard transform based transceiver design for SC-FDMA with discrete wavelet transform. China Communications, 14(5), 193–206.

    Article  Google Scholar 

  41. Chvojka, P., Zvanovec, S., Haigh, P. A., & Ghassemlooy, Z. (2015). Channel characteristics of visible light communications within a dynamic indoor environment. Journal of Lightwave Technology, 33(9), 1719–1725.

    Article  Google Scholar 

  42. Pesek, P., Zvanovec, S., Chvojka, P., Bhatnagar, M. R., Ghassemlooy, Z., & Saxena, P. (2018). Mobile user connectivity in relay-assisted visible light communications. Sensors, 18(4), 1125.

    Article  Google Scholar 

  43. Komine, T., & Nakagawa, M. (2004). Fundamental analysis for a visible-light communication system using LED lights. IEEE Transactions on Consumer Electronics, 50(1), 100–107.

    Article  Google Scholar 

  44. Lee, K., Park, H., & Barry, J. R. (2011). Indoor channel characteristics for visible light communications. IEEE Communications Letters, 15(2), 217–219.

    Article  Google Scholar 

  45. Vitthaladevuni, P. K., Alouini, M.-S., & Kieffer, J. C. (2005). Exact BER computation for cross QAM constellations. IEEE Transactions of Wireless Communication, 4(6), 3039–3050.

    Article  Google Scholar 

  46. Alouini, M. S., & Goldsmith, A. J. (1999). A unified approach for calculating error rates of linearly modulated signals over generalized fading channels. IEEE Transactions on Communications, 47(9), 1324–1334.

    Article  Google Scholar 

  47. Tsonev, D., Sinanovic, S., & Haas, H. (2011). Enhanced subcarrier index modulation (SIM) OFDM. In GLOBECOM workshops (GC Wkshps), IEEE (pp. 728–732).

  48. He, Q., Schmitz, C., & Schmeink, A. (2013). BER of Fourier transform and discrete wavelet transform based OFDM, ISWCS 2013. In The tenth international symposium on wireless communication systems, Ilmenau, Germany (pp. 1–5).

  49. OptoSupply, OSW4XME3C1S LED. (2012). https://www.alldatasheet.net/datasheet-pdf/pdf/352547/OPTOSUPPLY/OSW4XME3C1S.html.

  50. Hamamatsu Photon, Si PIN Photodiode—S6775. (2014). https://www.hamamatsu.com/resources/pdf/ssd/s2506-02-etc-kpin1048e.pdf.

  51. Musabe, R., Lionel, M. B., Ushindi, V. M., Atupenda, M., Ntaganda, J., & Bajpai, G. (2019). PAPR reduction in LTE network using both peak windowing and clipping techniques. Journal of Electrical Systems and Information Technology, 6(1), 3.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arslan Khalid.

Ethics declarations

Conflict of interest

The author(s) declare(s) that there is no conflict of interest regarding the publication of this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khalid, A., Rashid, F., Tahir, U. et al. Multi-carrier Visible Light Communication System Using Enhanced Sub-carrier Index Modulation and Discrete Wavelet Transform. Wireless Pers Commun 127, 187–215 (2022). https://doi.org/10.1007/s11277-021-08121-y

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11277-021-08121-y

Keywords

Navigation