Skip to main content
Log in

Content-oriented Framework for Future Internet

  • Published:
Wireless Personal Communications Aims and scope Submit manuscript

Abstract

In this paper, we propose a Content-Oriented Framework for future Internet (COFI) to reduce content-oriented communication costs and latency by exploiting advantages of IP networks and CCN. To be compatible with the Internet, COFI maps a name prefix to a global routing prefix and a name to an anycast address. In this way, a content-centric domain identified by a name prefix can also be defined by the mapping global routing prefix, and the content identified by a name can also be specified by the mapping anycast address. Based on the mapping mechanism, the content-oriented communications between IP and CCN are achieved in the unicast way. Moreover, COFI proposes the request pending mechanism so that multiple consumers share desired contents via one communication process. COFI is evaluated, and the data show that COFI reduces content-oriented communication costs and latency.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig.1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Habibzadeh, H., Dinesh, K., Shishvan, O. R., Boggio-Dandry, A., Sharma, G., & Soyata, T. (2020). A survey of healthcare internet of things (hiot): A clinical perspective. IEEE Internet of Things Journal, 7(1), 53–71

    Article  Google Scholar 

  2. Wang, X., & Cai, S. (2020). Secure healthcare monitoring framework integrating ndn-based iot with edge cloud. Future Generation Computer Systems, 112, 320–329

    Article  Google Scholar 

  3. Wang, X., & Cai, S. (2020). An efficient named-data-networking-based iot cloud framework. IEEE Internet of Things Journal, 7(4), 3453–3461

    Article  Google Scholar 

  4. Cisco, . (2014). Cisco visual networking index: Forecast and methodology: 2013–2018. San Jose, CA, USA, Tech: Rep.

    Google Scholar 

  5. Wang, X. (2015). IPv6-Based vehicular cloud networking. IEEE Communications Letters, 19(6), 933–936

    Article  Google Scholar 

  6. Dhingra, S., Madda, R. B., Gandomi, A. H., Patan, R., & Daneshmand, M. (2019). Internet of things mobile - air pollution monitoring system (iot-mobair). IEEE Internet of Things Journal, 6(3), 5577–5584

    Article  Google Scholar 

  7. Wang, X. , & Lu, Y. . (2020).Efficient forwarding and data acquisition in NDN-based MANET. IEEE Transactions on Mobile Computing.

  8. LeeLeeGerlaOh, V. E. K. Y. M. S. Y. (2014). Vehicular cloud networking: Architecture and design principles. Communications Magazine, IEEE, 52(2), 148–155

    Article  Google Scholar 

  9. Arshad, S., Azam, M. A., Rehmani, M. H., & Loo, J. (2019). Recent advances in information-centric networking-based internet of things (ICN-IoT). IEEE Internet of Things Journal, 6(2), 2128–2158

    Article  Google Scholar 

  10. Jacobson, V., Smetters, D. K., Thornton, J. D., Plass, M. F., Briggs, N. H., & Braynard, R. L. (2012). Networking named content. Communications of the acm., 55(1), 117–124

    Article  Google Scholar 

  11. Kamel, G., Wang, N., Vassilakis, V., Sun, Z., Navaratnam, P., Wang, C., & Tafazolli, R. (2015). CAINE: a context-aware information-centric network ecosystem. IEEE Communications Magazine, 53(8), 176–183

    Article  Google Scholar 

  12. Wang, X., & Zhu, X. (2017). Anycast-Based Content-Centric MANET. IEEE Systems Journal, 12(2), 1679–1687

    Article  Google Scholar 

  13. Hinden R M, Deering S E (2006). IP version 6 addressing architecture. IETF RFC 4291.

  14. Gladisch, A., Daher, R., & Tavangarian, D. (2014). Survey on mobility and multihoming in future internet. Wireless personal communications, 74(1), 45–81

    Article  Google Scholar 

  15. McPherson, D., Oran, D., Thaler, D., & Osterweil, E. (2014). Architectural considerations of IP anycast. RFC 7094.

  16. Kostin, A. E., Fanaeian, Y., & Al-Wattar, H. (2016). Anycast tree-based routing in mobile wireless sensor networks with multiple sinks. Wireless Networks, 22(2), 579–598

    Article  Google Scholar 

  17. Gao, D., Lin, H., & Liu, X. (2016). Routing protocol for k-anycast communication in rechargeable wireless sensor networks. Computer Standards & Interfaces, 43, 12–20

    Article  Google Scholar 

  18. Kim, J., Lin, X., Shroff, N. B., & Sinha, P. (2010). Minimizing delay and maximizing lifetime for wireless sensor networks with anycast. IEEE/ACM Transactions on Networking, 18(2), 515–528

    Article  Google Scholar 

  19. Wang, X. (2008). Analysis and design of a k-Anycast communication model in IPv6. Computer Communications, 31(10), 2071–2077

    Article  Google Scholar 

  20. Fang, C., Yao, H., Wang, Z., Wu, W., Jin, X., & Yu, F. R. (2018). A survey of mobile information-centric networking: research issues and challenges. IEEE Communications Surveys & Tutorials, 20(3), 2353–2371

    Article  Google Scholar 

  21. Khelifi, H., Luo, S., Nour, B., Moungla, H., Faheem, Y., Hussain, R., et al. (2020). Named data networking in vehicular ad hoc networks: State-of-the-art and challenges. IEEE Communications Surveys & Tutorials, 22(1), 320–351

    Article  Google Scholar 

  22. Tsilopoulos, C., & Xylomenos, G. (2011). Supporting diverse traffic types in information centric networks. In Proceedings of the ACM SIGCOMM workshop on Information-centric networking (pp. 13–18). ACM.

  23. Gupta, A., & Shankarananda, B. M. (2015). Fast interest recovery in content centric networking under lossy environment. In 2015 IEEE CCNC, IEEE (pp. 802–807).

  24. Wang, L., Waltari, O., & Kangasharju, J. (2013). Mobiccn: Mobility support with greedy routing in content-centric networks. In 2013 IEEE Global Communications Conference (GLOBECOM) (pp. 2069–2075). IEEE.

  25. Amadeo, M., Molinaro, A., & Ruggeri, G. (2013). E-CHANET: Routing, forwarding and transport in information-centric multihop wireless networks. Computer Communications, 36(7), 792–803

    Article  Google Scholar 

  26. Wang, D., & Wang, X. (2021). Content-centric framework over the internet environments. Wireless Personal Communications, 116(3), 2135–2158

    Article  Google Scholar 

  27. Wang, X., Wang, X., & Li, Y. (2021). Ndn-based iot with edge computing. Future Generation Computer Systems, 115, 397–405

    Article  Google Scholar 

Download references

Acknowledgement

This work is supported by National Natural Science Foundation of China (61202440).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaonan Wang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Y., Wang, X. Content-oriented Framework for Future Internet. Wireless Pers Commun 120, 869–886 (2021). https://doi.org/10.1007/s11277-021-08494-0

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11277-021-08494-0

Keywords

Navigation