Skip to main content

Advertisement

Log in

A Review on Blockchain and IoT Integration from Energy, Security and Hardware Perspectives

  • Published:
Wireless Personal Communications Aims and scope Submit manuscript

Abstract

Blockchain is one of the promising technologies nowadays due to its unique characteristics like security, privacy, data integrity, decentralization, immutability, and traceability. Originally used to implement cryptocurrencies, recently numerous applications have employed blockchain in their architectures including applications targeted for the internet of things (IoT) environments. It is expected that by 2025 more than 21 billion IoT devices will be used especially with use of cloud, fog and edge computing architectures. Integrating blockchain in the IoT architecture provides many advantages such as enhancing security and privacy, better speed and costs, traceability and reliability, and elimination of single point of failure. On the other hand, many issues and challenges have arisen and should be addressed. Typically, IoT system consists of lightweight devices with limited hardware resources and constraints. Hence, the energy efficiency is a fundamental challenge in such devices. The main motivation of this paper is to survey designing a secure and energy efficient blockchain-based IoT implementation using a suitable hardware design. The paper classifies, presents and analyzes existing solutions to better implement IoT environment combined with blockchain technology. Our investigation demonstrations that most of lightweight solutions handle either the energy or security issue separately. Moreover, many works are theoretical-based analysis and solutions without considering the real blockchain-based IoT validation design. Energy evaluation for IoT hardware devices is not given the adequate research bandwidth. Additionally, limited works evaluated their techniques from hardware constrained device perspective. It is recommended that the performance of any proposed solution should be validated using real designs. The hardware perspective evaluation should be in mind for efficient blockchain-based IoT hardware implementation. The proposed lightweight solutions should focus more on efficient energy implementation while considering the lightweight security mechanisms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data Availability

Enquiries about data availability should be directed to the authors.

References

  1. Yaga, D., Mell, P., Roby, N., & Scarfone, K. (2019). Blockchain technology overview. ArXiv Preprint http://arxiv.org/abs/1906.11078

  2. What is Ethereum? (2017). https://www.cbinsights.com/research/what-is-ethereum/

  3. Nakamoto, S. (2019). Bitcoin: A peer-to-peer electronic cash system, Manubot.

  4. Noyes, C. (2016). Efficient blockchain-driven multiparty computation markets at scale, Technical report.

  5. Casino, F., Dasaklis, T. K., & Patsakis, C. (2019). A systematic literature review of blockchain-based applications: Current status, classification and open issues. Telematics and Informatics., 36, 55–81.

    Article  Google Scholar 

  6. Sharples, M., & Domingue, J. (2016). The blockchain and kudos: A distributed system for educational record, reputation and reward. In European conference on technology enhanced learning (pp. 490–496). Springer.

  7. Li, J., Liu, Z., Chen, L., Chen, P., & Wu, J., Blockchain-based security architecture for distributed cloud storage. In 2017 IEEE international symposium on parallel and distributed processing with applications and 2017 IEEE international conference on ubiquitous computing and communications (ISPA/IUCC) (pp. 408–411). IEEE.

  8. Dorri, A., Kanhere, S. S., Jurdak, R., & Gauravaram, P. (2017) Blockchain for IoT security and privacy: The case study of a smart home. In 2017 IEEE international conference on pervasive computing and communications workshops (PerCom workshops) (pp. 618–623). IEEE.

  9. Vailshery, L. S. (2022). Number of Internet of Things (IoT) Connected Devices Worldwide from 2019 to 2030. https://www.statista.com/statistics/1183457/iot-connected-devices-worldwide/

  10. Radiocrafts, Cloud vs fog vs mist computing, which one should you use? (2019). https://radiocrafts.com/cloud-vs-fog-vs-mist-computing-which-one-should-you-use/

  11. Ahmed, I., Zhang, Y., Jeon, G., Lin, W., Khosravi, M. R., & Qi, L. (2022). A blockchain-and artificial intelligence-enabled smart IoT framework for sustainable city. International Journal of Intelligent Systems, 37, 6493–6507.

    Article  Google Scholar 

  12. Shahid, J., Ahmad, R., Kiani, A. K., Ahmad, T., Saeed, S., & Almuhaideb, A. M. (2022). Data protection and privacy of the internet of healthcare things (IoHTs). Applied Sciences, 12, 1927.

    Article  Google Scholar 

  13. Mehmood, Y., Ahmad, F., Yaqoob, I., Adnane, A., Imran, M., & Guizani, S. (2017). Internet-of-things-based smart cities: Recent advances and challenges. IEEE Communications Magazine., 55, 16–24.

    Article  Google Scholar 

  14. Xia, F., Yang, L. T., Wang, L., & Vinel, A. (2012). Internet of things. International Journal of Communication Systems., 25, 1101.

    Article  Google Scholar 

  15. Fernández-Caramés, T. M., & Fraga-Lamas, P. (2018). A review on the use of blockchain for the internet of things. IEEE Access., 6, 32979–33001.

    Article  Google Scholar 

  16. Banafa, A. (2017). IoT and blockchain convergence. https://medium.com/@banafa/iot-and-blockchain-convergence-d5ea41514cc2

  17. Castro, M., & Liskov, B. (1999). Practical Byzantine fault tolerance. In OSDI (pp. 173–186).

  18. Salimitari, M., & Chatterjee, M. (2018). An overview of blockchain and consensus protocols for IoT networks. ArXiv Preprint http://arxiv.org/abs/1809.05613

  19. Pohrmen, F. H., Das, R. K., & Saha, G. (2019). Blockchain-based security aspects in heterogeneous Internet-of-Things networks: A survey. Transactions on Emerging Telecommunications Technologies., 30, e3741.

    Article  Google Scholar 

  20. Dai, H.-N., Zheng, Z., & Zhang, Y. (2019). Blockchain for internet of things: A survey. IEEE Internet of Things Journal., 6, 8076–8094.

    Article  Google Scholar 

  21. Maroufi, M., Abdolee, R., & Tazekand, B. M. (2019). On the convergence of blockchain and internet of things (iot) technologies. ArXiv Preprint http://arxiv.org/abs/1904.01936

  22. Atlam, H. F., Alenezi, A., Alassafi, M. O., & Wills, G. (2018). Blockchain with Internet of Things: Benefits, challenges, and future directions. International Journal of Intelligent Systems and Applications., 10, 40–48.

    Article  Google Scholar 

  23. Wu, M., Wang, K., Cai, X., Guo, S., Guo, M., & Rong, C. (2019). A comprehensive survey of blockchain: From theory to IoT applications and beyond. IEEE Internet of Things Journal., 6, 8114–8154.

    Article  Google Scholar 

  24. Finlow-Bates, K. (2017). A lightweight blockchain consensus protocol, computer security resource center. Retrieved July 8, 2018, from https://Csrc.Nist.Gov/CSRC/Media/Publications/Nistir/8202/Draft/Documents/Nistir8202-Draft.Pdf

  25. Fu, S., Zhao, L., Ling, X., & Zhang, H. (2019). Maximizing the system energy efficiency in the blockchain based Internet of Things. In ICC 2019–2019 IEEE international conference on communications (ICC) (pp. 1–6). IEEE.

  26. Xu, C., Wang, K., Li, P., Guo, S., Luo, J., Ye, B., & Guo, M. (2018). Making big data open in edges: A resource-efficient blockchain-based approach. IEEE Transactions on Parallel and Distributed Systems., 30, 870–882.

    Article  Google Scholar 

  27. Khalid, U., Asim, M., Baker, T., Hung, P. C. K., Tariq, M. A., & Rafferty, L. (2020). A decentralized lightweight blockchain-based authentication mechanism for IoT systems. Cluster Computing, 23, 2067–2087.

    Article  Google Scholar 

  28. Ge, C., Liu, Z., & Fang, L. (2020). A blockchain based decentralized data security mechanism for the Internet of Things. Journal of Parallel and Distributed Computing, 141, 1–9.

    Article  Google Scholar 

  29. Ferrag, M. A., Derdour, M., Mukherjee, M., Derhab, A., Maglaras, L., & Janicke, H. (2018). Blockchain technologies for the internet of things: Research issues and challenges. IEEE Internet of Things Journal., 6, 2188–2204.

    Article  Google Scholar 

  30. Buterin, V. (2013). Ethereum white paper, GitHub repository, EOS. IO Technical White Paper V2 (pp. 22–23).

  31. Soulsby, M. (2018). The benefits of the Ethereum blockchain. https://medium.com/plutus-it/the-benefits-of-the-ethereum-blockchain-f332e62f7659

  32. Kosba, A., Miller, A., Shi, E., Wen, Z., & Papamanthou, C. (2016) Hawk: The blockchain model of cryptography and privacy-preserving smart contracts. In 2016 IEEE Symposium on Security and Privacy (SP) (pp. 839–858). IEEE.

  33. Network, S. (2018). Blockchain 4.0 is coming—And Seele is leading it. https://medium.com/@SummitNetwork/blockchain-4-0-is-coming-and-seele-is-leading-it-f88766fd9e32

  34. InterValue (2018). InterValue: Create Real Blockchain 4.0 era. https://intervalueproject.wixsite.com/website/single-post/2018/05/16/InterValue-Create-real-Blockchain-40-era

  35. Ali, A., Latif, S., Qadir, J., Kanhere, S., Singh, J., & Crowcroft, J. (2019). Blockchain and the future of the internet: A comprehensive review (pp. 1–21). ArXiv Preprint http://arxiv.org/abs/1904.00733

  36. Xu, X., Weber, I., Staples, M., Zhu, L., Bosch, J., Bass, L., Pautasso, C., & Rimba, P. (2017). A taxonomy of blockchain-based systems for architecture design. In 2017 IEEE international conference on software architecture (ICSA) (pp. 243–252). IEEE.

  37. Lu, Y. (2018). Blockchain: A survey on functions, applications and open issues. Journal of Industrial Integration and Management., 3, 1850015.

    Article  Google Scholar 

  38. Zheng, Z., Xie, S., Dai, H.-N., Chen, X., & Wang, H. (2018). Blockchain challenges and opportunities: A survey. International Journal of Web and Grid Services., 14, 352–375.

    Article  Google Scholar 

  39. Antonopoulos, A. M. (2014). Mastering Bitcoin: Unlocking digital cryptocurrencies. O’Reilly Media, Inc.

    Google Scholar 

  40. Ismail, L., & Materwala, H. (2019). A review of blockchain architecture and consensus protocols: Use cases. Challenges, and Solutions, Symmetry., 11, 1198.

    Article  Google Scholar 

  41. Zheng, Z., Xie, S., Dai, H., Chen, X., & Wang, H. (2017). An overview of blockchain technology: Architecture, consensus, and future trends. In 2017 IEEE international congress on big data (BigData Congress) (pp. 557–564). IEEE.

  42. Johnson, D., Menezes, A., & Vanstone, S. (2001). The elliptic curve digital signature algorithm (ECDSA). International Journal of Information Security., 1, 36–63.

    Article  Google Scholar 

  43. Tasca, P., & Tessone, C. J. (2017). Taxonomy of blockchain technologies. Principles of identification and classification. ArXiv Preprint http://arxiv.org/abs/1708.04872

  44. Mattila, J. (2016). The blockchain phenomenon—The disruptive potential of distributed consensus architectures, ETLA working papers.

  45. Nguyen, G.-T., & Kim, K. (2018). A survey about consensus algorithms used in blockchain. Journal of Information Processing Systems, 14, 101–128.

    Google Scholar 

  46. What is blockchain transparency? (n.d.). https://defipedia.com/topic/blockchain-transparency

  47. Viriyasitavat, W., & Hoonsopon, D. (2019). Blockchain characteristics and consensus in modern business processes. Journal of Industrial Information Integration, 13, 32–39.

    Article  Google Scholar 

  48. Blockchain Characteristics. (n.d.). https://whichblockchain.com/blockchain-characteristics/#:~:text=Blockchain characteristics 1 Security. The encryption built into, feature of blockchain-based systems is their adaptability.

  49. Ramachandran, G. S., & Krishnamachari, B. (2018). Blockchain for the IoT: Opportunities and challenges, ArXiv Preprint http://arxiv.org/abs/1805.02818

  50. Panarello, A., Tapas, N., Merlino, G., Longo, F., & Puliafito, A. (2018). Blockchain and IoT integration: A systematic survey. Sensors., 18, 2575.

    Article  Google Scholar 

  51. Yu, Z., Song, L., Jiang, L., & Sharafi, O. K. (2021). Systematic literature review on the security challenges of blockchain in IoT-based smart cities, Kybernetes.

  52. Uddin, M. A., Stranieri, A., Gondal, I., & Balasubramanian, V. (2021). A survey on the adoption of blockchain in IoT: Challenges and solutions. Blockchain: Research and Applications, 2, 100006.

    Google Scholar 

  53. Sengupta, J., Ruj, S., & Das Bit, S. (2020). A comprehensive survey on attacks, security issues and blockchain solutions for IoT and IIoT. Journal of Network and Computer Applications., 149, 102481.

    Article  Google Scholar 

  54. Mershad, K. (2022). A taxonomy and review of lightweight blockchain solutions for internet of things networks, ArXiv Preprint http://arxiv.org/abs/2212.06272

  55. Zafar, S., Bhatti, K. M., Shabbir, M., Hashmat, F., & Akbar, A. H. (2022). Integration of blockchain and Internet of Things: Challenges and solutions. Annals of Telecommunications., 77, 13–32.

    Article  Google Scholar 

  56. Stallings, W. (2015). The internet of things: Network and security architecture. Internet Protoc. J., 18, 2–24.

    Google Scholar 

  57. Sultan, A., Mushtaq, M. A., & Abubakar, M. (2019). IOT security issues via blockchain: A review paper. In Proceedings of the 2019 international conference on blockchain technology (pp. 60–65).

  58. Ahmed, A. W., Ahmed, M. M., Khan, O. A., & Shah, M. A. (2017). A comprehensive analysis on the security threats and their countermeasures of IoT. International Journal of Advanced Computer Science and Applications., 8, 489–501.

    Google Scholar 

  59. Oravec, J. A. (2017). Emerging “cyber hygiene” practices for the Internet of Things (IoT): Professional issues in consulting clients and educating users on IoT privacy and security. In 2017 IEEE international professional communication conference (ProComm) (pp. 1–5). IEEE.

  60. Sicari, S., Rizzardi, A., Grieco, L. A., & Coen-Porisini, A. (2015). Security, privacy and trust in Internet of Things: The road ahead. Computer Networks., 76, 146–164.

    Article  Google Scholar 

  61. Mekki, K., Bajic, E., Chaxel, F., & Meyer, F. (2019). A comparative study of LPWAN technologies for large-scale IoT deployment. ICT Express., 5, 1–7.

    Article  Google Scholar 

  62. Pal, K. (2022) Cryptography and blockchain solutions for security protection of internet of things applications. In Information security practices for the internet of things, 5G, and next-generation wireless networks (pp. 152–178). IGI Global.

  63. Zhang, Y., & Wen, J. (2015). An IoT electric business model based on the protocol of bitcoin. In 2015 18th International conference on intelligence in next generation networks (pp. 184–191). IEEE.

  64. Dai, Y., Xu, D., Maharjan, S., & Zhang, Y. (2018). Joint computation offloading and user association in multi-task mobile edge computing. IEEE Transactions on Vehicular Technology., 67, 12313–12325.

    Article  Google Scholar 

  65. Tran, T. X., Hajisami, A., Pandey, P., & Pompili, D. (2017). Collaborative mobile edge computing in 5G networks: New paradigms, scenarios, and challenges. IEEE Communications Magazine, 55, 54–61.

    Article  Google Scholar 

  66. Suárez-Albela, M., Fernández-Caramés, T. M., Fraga-Lamas, P., & Castedo, L. (2017). A practical evaluation of a high-security energy-efficient gateway for IoT fog computing applications. Sensors, 17, 1978.

    Article  Google Scholar 

  67. Suárez-Albela, M., Fraga-Lamas, P., & Fernández-Caramés, T. M. (2018). A practical evaluation on RSA and ECC-based cipher suites for IoT high-security energy-efficient fog and mist computing devices. Sensors., 18, 3868.

    Article  Google Scholar 

  68. Original Scrypt Function for Tarsnap. (n.d.). http://www.tarsnap.com/scrypt.html

  69. X11 Official Documentation for Dash. (n.d.). https://dashpay.atlassian.net/wiki/spaces/DOC/pages/1146918/X11

  70. Aumasson, J.-P., Henzen, L., Meier, W., & Phan, R.C.-W. (2008). Sha-3 proposal blake. Submission to NIST., 229, 230.

    Google Scholar 

  71. Bormann, C., Ersue, M., & Keranen, A. (2014). Terminology for constrained-node networks (pp. 1721–2070). Internet Engineering Task Force (IETF).

    Google Scholar 

  72. Running A Full Node. (n.d.). https://bitcoin.org/en/full-node

  73. Dorri, A., Kanhere, S. S., & Jurdak, R. (2016). Blockchain in internet of things: Challenges and solutions. ArXiv Preprint http://arxiv.org/abs/1608.05187

  74. França, B. F. (2015). Homomorphic mini-blockchain scheme.

  75. Bruce, J. D. (2014). The mini-blockchain scheme, White Paper.

  76. Cao, B., Li, Y., Zhang, L., Zhang, L., Mumtaz, S., Zhou, Z., & Peng, M. (2019). When Internet of Things meets blockchain: Challenges in distributed consensus. IEEE Network, 33, 133–139.

    Article  Google Scholar 

  77. VISA claims about the number of transactions handled by VisaNet, (n.d.). https://usa.visa.com/runyour-business/small-business-tools/retail.html

  78. Litecoins, (n.d.). https://litecoin.com

  79. Conti, M., Kumar, E. S., Lal, C., & Ruj, S. (2018). A survey on security and privacy issues of bitcoin. IEEE Communications Surveys & Tutorials., 20, 3416–3452.

    Article  Google Scholar 

  80. Fabiano, N. (2017). The Internet of Things ecosystem: The blockchain and privacy issues. The challenge for a global privacy standard. In 2017 International conference on internet of things for the global community (IoTGC) (pp. 1–7). IEEE.

  81. Apostolaki, M., Marti, G., Müller, J., & Vanbever, L. (2018). SABRE: Protecting bitcoin against routing attacks. ArXiv Preprint http://arxiv.org/abs/1808.06254

  82. Dorri, A., Kanhere, S. S., & Jurdak, R. (2017). Towards an optimized blockchain for IoT. In 2017 IEEE/ACM Second International Conference on Internet-of-Things Design and Implementation (IoTDI) (pp. 173–178). IEEE.

  83. Hayouni, H., & Hamdi, M. (2016). Secure data aggregation with homomorphic primitives in wireless sensor networks: A critical survey and open research issues. In 2016 IEEE 13th international conference on networking, sensing, and control (ICNSC) (pp. 1–6). IEEE.

  84. Salimitari, M., & Chatterjee, M. (2018). A survey on consensus protocols in blockchain for IoT networks. ArXiv Preprint http://arxiv.org/abs/1809.05613

  85. Puthal, D., Mohanty, S. P., Yanambaka, V. P., & Kougianos, E., Poah: A novel consensus algorithm for fast scalable private blockchain for large-scale IoT frameworks (pp. 1–26). ArXiv Preprint http://arxiv.org/abs/2001.07297

  86. Zhang, W., Wu, Z., Han, G., Feng, Y., & Shu, L. (2020). LDC: A lightweight dada consensus algorithm based on the blockchain for the industrial Internet of Things for smart city applications. Future Generation Computer Systems, 108, 574–582.

    Article  Google Scholar 

  87. Seok, B., Park, J., & Park, J. H. (2019). A lightweight Hash-based blockchain architecture for industrial IoT. Applied Sciences, 9, 3740.

    Article  Google Scholar 

  88. Summary of the Main Characteristics of the Current Lightweight Hash Functions, (n.d.). https://www.cryptolux.org/index.php/Lightweight_Hash_Functions#cite_note-BKLT11-22

  89. Abed, S., Jaffal, R., Mohd, B. J., & Al-Shayeji, M. (2021). An analysis and evaluation of lightweight hash functions for blockchain-based IoT devices. Cluster Computing., 24, 3065–3084.

    Article  Google Scholar 

  90. Rao, V., & Prema, K. V. (2019). Light-weight hashing method for user authentication in Internet-of-Things. Ad Hoc Networks, 89, 97–106.

    Article  Google Scholar 

  91. Fu, S., Fan, Q., Tang, Y., Zhang, H., Jian, X., & Zeng, X. (2019). Cooperative computing in integrated blockchain based internet of things. IEEE Internet of Things Journal, 7, 1603–1612.

    Article  Google Scholar 

  92. Chen, W., Zhang, Z., Hong, Z., Chen, C., Wu, J., Maharjan, S., Zheng, Z., & Zhang, Y. (2019). Cooperative and distributed computation offloading for blockchain-empowered industrial Internet of Things. IEEE Internet of Things Journal., 6, 8433–8446.

    Article  Google Scholar 

  93. Sharma, V. (2018). An energy-efficient transaction model for the blockchain-enabled internet of vehicles (IoV). IEEE Communications Letters., 23, 246–249.

    Article  Google Scholar 

  94. Yazdinejad, A., Parizi, R. M., Dehghantanha, A., Zhang, Q., & Choo, K.-K.R. (2020). An energy-efficient SDN controller architecture for IoT networks with blockchain-based security. IEEE Transactions on Services Computing, 13, 625–638.

    Article  Google Scholar 

  95. Dorri, A., Kanhere, S. S., Jurdak, R., & Gauravaram, P. (2019). LSB: A lightweight scalable blockchain for IoT security and anonymity. Journal of Parallel and Distributed Computing, 134, 180–197.

    Article  Google Scholar 

  96. Awasthi, S., Johri, P., & Khatri, S. K. (2018). IoT based security model to enhance blockchain technology. In 2018 International conference on advances in computing and communication engineering (ICACCE) (pp. 133–137). IEEE.

  97. Hong, H., Hu, B., & Sun, Z. (2019). Toward secure and accountable data transmission in Narrow Band Internet of Things based on blockchain. International Journal of Distributed Sensor Networks, 15, 1550147719842725.

    Article  Google Scholar 

  98. Dedeoglu, V., Jurdak, R., Putra, G. D., Dorri, A., & Kanhere, S. S. (2019). A trust architecture for blockchain in IoT. ArXiv Preprint http://arxiv.org/abs/1906.11461

  99. Nesa, N., & Banerjee, I. (2020). A lightweight security protocol for IoT using Merkle hash tree and chaotic cryptography (pp. 3–16). Springer.

    Google Scholar 

  100. Le, T., & Mutka, M. W. (2019). A lightweight block validation method for resource-constrained IoT devices in blockchain-based applications. In 2019 IEEE 20th international symposium on “A world of wireless, mobile and multimedia networks” (WoWMoM) (pp. 1–9). IEEE.

  101. Mohanty, S. N., Ramya, K. C., Rani, S. S., Gupta, D., Shankar, K., Lakshmanaprabu, S. K., & Khanna, A. (2020). An efficient Lightweight integrated Blockchain (ELIB) model for IoT security and privacy. Future Generation Computer Systems, 102, 1027–1037.

    Article  Google Scholar 

  102. Alphand, O., Amoretti, M., Claeys, T., Dall’Asta, S., Duda, A., Ferrari, G., Rousseau, F., Tourancheau, B., Veltri, L., & Zanichelli, F. (2018). IoTChain: A blockchain security architecture for the Internet of Things. In 2018 IEEE wireless communications and networking conference (WCNC) (pp. 1–6). IEEE.

  103. Hammi, B., Fayad, A., Khatoun, R., Zeadally, S., & Begriche, Y. (2020). A lightweight ECC-based authentication scheme for Internet of Things (IoT). IEEE Systems Journal, 14, 3440–3450.

    Article  Google Scholar 

  104. Taylor, M. B. (2017). The evolution of bitcoin hardware. Computer, 50, 58–66.

    Article  Google Scholar 

  105. Magaki, I., Khazraee, M., Gutierrez, L. V., & Taylor, M. B. (2016) Asic clouds: Specializing the datacenter. In 2016 ACM/IEEE 43rd annual international symposium on computer architecture (ISCA) (pp. 178–190). IEEE.

  106. Têtu, J.-F., Trudeau, L.-C., Van Beirendonck, M., Balatsoukas-Stimming, A., & Giard, P. (2019). FPGA-based mining of Lyra2REv2 cryptocurrencies. ArXiv Preprint http://arxiv.org/abs/1905.08792

  107. Mahony, A. O., & Popovici, E. A systematic review of blockchain hardware acceleration architectures. In 2019 30th Irish signals and systems conference (ISSC) (pp. 1–6). IEEE.

  108. Lunardi, R. C., Michelin, R. A., Neu, C. V., & Zorzo, A. F. (2018). Distributed access control on IoT ledger-based architecture. In NOMS 2018–2018 IEEE/IFIP network operations and management symposium (pp. 1–7). IEEE.

  109. Mo, B., Su, K., Wei, S., Liu, C., & Guo, J. (2018). A solution for internet of things based on blockchain technology. In 2018 IEEE international conference on service operations and logistics, and informatics (SOLI) (pp. 112–117). IEEE.

Download references

Funding

The authors have not disclosed any funding.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sa’ed Abed.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abed, S., Jaffal, R. & Mohd, B.J. A Review on Blockchain and IoT Integration from Energy, Security and Hardware Perspectives. Wireless Pers Commun 129, 2079–2122 (2023). https://doi.org/10.1007/s11277-023-10226-5

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11277-023-10226-5

Keywords

Navigation