Skip to main content
Log in

Mapping quantitative trait loci for growth and wood property traits in Cryptomeria japonica across multiple environments

  • Original Article
  • Published:
Tree Genetics & Genomes Aims and scope Submit manuscript

Abstract

Genomic regions which affected tree growth and wood property traits were investigated in the major plantation tree of Japan, Cryptomeria japonica, in three replicated common garden experiments planted in contrasting environments in Kyushu and Honshu, Japan. Phenotypic traits measured were stem diameter at breast height, tree height, wood strength (Young’s modulus), heartwood density, sapwood density, heartwood moisture content, and sapwood moisture content. Quantitative trait locus (QTL) analysis identified an average of 53 QTLs across the three environments. There were two QTLs which affected the same traits across all three environments. These stable QTLs were identified as being associated with sapwood density and Young’s modulus and explained 3.5–11.3% and 2.1–18.7% of the total genotypic variation, respectively. In contrast, the majority of QTLs detected were unique to only one environment, a finding which is consistent with QTL mapping studies of other forest trees, indicating a substantial contribution of environmental effects on the mapping progenies. Nonetheless, the two stable QTLs identified in this study could be important genomic regions to target for further research aimed at maximizing breeding efficiency and wood quality of C. japonica across wide environmental gradients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Bartholomé J, Salmon F, Vigneron P, Bouvet J-M, Plomion C, Gion J-M (2013) Plasticity of primary and secondary growth dynamics in Eucalyptus hybrids: a quantitative genetics and QTL mapping perspective. BMC Plant Biol 13:120

    Article  Google Scholar 

  • Bates D, Maechler M, Bolker B, Walker S (2015) Fitting linear mixed-effects models using lme4. J Stat Softw 67:1–48

    Article  Google Scholar 

  • Bdeir R, Muchero W, Yordanov Y, Tuskan GA, Busov V, Gailing O (2017) Quantitative trait locus mapping of Populus bark features and stem diameter. BMC Plant Biol 17:224

    Article  Google Scholar 

  • Berlin S, Hallingbäck HR, Beyer F, Nordh N-E, Weih M, Rönnberg-Wästljung A-C (2017) Genetics of phenotypic plasticity and biomass traits in hybrid willows across contrasting environments and years. Ann Bot 120:87–100

    Article  Google Scholar 

  • Bradshaw H, Stettler RF (1995) Molecular genetics of growth and development in Populus. IV. Mapping QTLs with large effects on growth, form, and phenology traits in a forest tree. Genetics 139:963–973

    CAS  PubMed  Google Scholar 

  • Brown GR, Bassoni DL, Gill GP, Fontana JR, Wheeler NC, Megraw RA, Davis MF, Sewell MM, Tuskan GA, Neale DB (2003) Identification of quantitative trait loci influencing wood property traits in loblolly pine (Pinus taeda l.). III. QTL verification and candidate gene mapping. Genetics 164:1537–1546

    CAS  PubMed  PubMed Central  Google Scholar 

  • Butler D, Cullis BR, Gilmour A, Gogel B (2009) ASReml-R reference manual. The State of Queensland, Department of Primary Industries and Fisheries, Brisbane

    Google Scholar 

  • Carolyn RA (2002) Genetics of eucalyptus wood properties. Ann For Sci 59:525–531

    Article  Google Scholar 

  • Collard BCY, Jahufer MZZ, Brouwer JB, Pang ECK (2005) An introduction to markers, quantitative trait loci (QTL) mapping and marker-assisted selection for crop improvement: the basic concepts. Euphytica 142:169–196

    Article  CAS  Google Scholar 

  • Costa e Silva J, Potts BM, Dutkowski GW (2006) Genotype by environment interaction for growth of Eucalyptus globulus in Australia. Tree Genet Genomes 2:61–75

    Article  Google Scholar 

  • Costa e Silva J, Hardner C, Tilyard P, Potts BM (2011) The effects of age and environment on the expression of inbreeding depression in Eucalyptus globulus. Heredity 107:50–60

    Article  Google Scholar 

  • Downes G, Harwood C, Washusen R, Ebdon N, Evans R, White D, Dumbrell I (2014) Wood properties of Eucalyptus globulus at three sites in Western Australia: effects of fertiliser and plantation stocking. Aust For 77:179–188

    Article  Google Scholar 

  • Freeman JS, Whittock SP, Potts BM, Vaillancourt RE (2009) QTL influencing growth and wood properties in Eucalyptus globulus. Tree Genet Genomes 5:713–722

    Article  Google Scholar 

  • Freeman JS, Potts BM, Downes GM, Pilbeam D, Thavamanikumar S, Vaillancourt RE (2013) Stability of quantitative trait loci for growth and wood properties across multiple pedigrees and environments in Eucalyptus globulus. New Phytol 198:1121–1134

    Article  CAS  Google Scholar 

  • Fujisawa Y, Ohta S, Nishimura K, Tajima M (1992) Wood characteristics and genetic variations in sugi (Cryptomeria japonica): clonal differences and correlations between locations of dynamic moduli of elasticity and diameter growths in plus-tree clones. (Cryptomeria japonica): clonal differences and correlations between locations of dynamic moduli of elasticity and diameter growths in plus-tree clones. Mokuzai Gakkaishi 38:638–644

  • Gilmour AR, Cullis BR, Verbyla AP (1997) Accounting for natural and extraneous variation in the analysis of field experiments. J Agric Biol Environ Stat 2:269–293

    Article  Google Scholar 

  • Grattapaglia D, Resende MD (2011) Genomic selection in forest tree breeding. Tree Genet Genomes 7(2):241–255

    Article  Google Scholar 

  • Grattapaglia D, Bertolucci FL, Penchel R, Sederoff RR (1996) Genetic mapping of quantitative trait loci controlling growth and wood quality traits in Eucalyptus grandis using a maternal half-sib family and RAPD markers. Genetics 144:1205–1214

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hiraoka Y, Fukatsu E, Mishima K, Hirao T, Teshima KM, Tamura M, Tsubomura M, Iki T, Kurita M, Takahashi M, Watanabe A (2018) Potential of genome-wide studies in unrelated plus trees of a coniferous species, Cryptomeria japonica (Japanese cedar). Front Plant Sci 9:1322

    Article  Google Scholar 

  • Housset JM, Nadeau S, Isabel N, Depardieu C, Duchesne I, Lenz P, Girardin MP (2018) Tree rings provide a new class of phenotypes for genetic associations that foster insights into adaptation of conifers to climate change. New Phytol 218:630–645

    Article  Google Scholar 

  • Iwata H, Minamikawa MF, Kajiya-Kanegae H, Ishimori M, Hayashi T (2016) Genomics-assisted breeding in fruit trees. Breed Sci 66(1):100–115

    Article  CAS  Google Scholar 

  • Jermstad KD, Bassoni DL, Jech KS, Ritchie GA, Wheeler NC, Neale DB (2003) Mapping of quantitative trait loci controlling adaptive traits in coastal Douglas fir. III. Quantitative trait loci-by-environment interactions. Genetics 165:1489–1506

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kim D-W, Murphy G (2013) Forecasting air-drying rates of small Douglas-fir and hybrid poplar stacked logs in Oregon, USA. Int J For Eng 24:137–147

    Google Scholar 

  • Kuramoto N, Kondo T, Fujisawa Y, Nakata R, Hayashi E, Goto Y (2000) Detection of quantitative trait loci for wood strength in Cryptomeria japonica. Can J For Res 30:1525–1533

    Article  CAS  Google Scholar 

  • Lauri P, Havlík P, Kindermann G, Forsell N, Böttcher H, Obersteiner M (2014) Woody biomass energy potential in 2050. Energy Policy 66:19–31

    Article  Google Scholar 

  • Li Y, Suontama M, Burdon RD, Dungey HS (2017) Genotype by environment interactions in forest tree breeding: review of methodology and perspectives on research and application. Tree Genet Genomes 13:60

    Article  Google Scholar 

  • Moriguchi Y, Uchiyama K, Ueno S, Ujino-Ihara T, Matsumoto A, Iwai J, Miyajima D, Saito M, Sato M, Tsumura Y (2016) A high-density linkage map with 2560 markers and its application for the localization of the male-sterile genes ms3 and ms4 in Cryptomeria japonica D. Don. Tree Genet Genomes 12:57

    Article  Google Scholar 

  • Muchero W, Guo J, DiFazio SP, Chen J-G, Ranjan P, Slavov GT, Gunter LE, Jawdy S, Bryan AC, Sykes R, Ziebell A, Klápště J, Porth I, Skyba O, Unda F, El-Kassaby YA, Douglas CJ, Mansfield SD, Martin J, Schackwitz W, Evans LM, Czarnecki O, Tuskan GA (2015) High-resolution genetic mapping of allelic variants associated with cell wall chemistry in Populus. BMC Genomics 16:24

    Article  Google Scholar 

  • Muñoz F, Sanchez L (2019) breedR: statistical methods for forest genetic resources analysts. R package version 0.12–2. https://github.com/famuvie/breedR. Accessed 25 Mar 2019

  • Neale DB, Kremer A (2011) Forest tree genomics: growing resources and applications. Nat Rev Genet 12:111–122

    Article  CAS  Google Scholar 

  • Newton PF (2003) Systematic review of yield responses of four North American conifers to forest tree improvement practices. For Ecol Manag 172:29–51

    Article  Google Scholar 

  • Ohba K (1993) Clonal forestry with Sugi (Cryptomeria japonica). In: Ahuja M-R, Libby WJ (eds) Clonal forestry II: conservation and application. Springer-Verlag Berlin Heidelberg, Berlin, pp 66–90

    Chapter  Google Scholar 

  • Pelgas B, Bousquet J, Meirmans PG, Ritland K, Isabel N (2011) QTL mapping in white spruce: gene maps and genomic regions underlying adaptive traits across pedigrees, years and environments. BMC Genomics 12:145

    Article  Google Scholar 

  • Pot D, Rodrigues J-C, Rozenberg P, Chantre G, Tibbits J, Cahalan C, Pichavant F, Plomion C (2006) QTLs and candidate genes for wood properties in maritime pine (Pinus pinaster Ait.). Tree Genet Genomes 2:10–24

    Article  Google Scholar 

  • R Core Team (2018) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria

    Google Scholar 

  • Rae AM, Pinel MPC, Bastien C, Sabatti M, Street NR, Tucker J, Dixon C, Marron N, Dillen SY, Taylor G (2008) QTL for yield in bioenergy Populus: identifying GxE interactions from growth at three contrasting sites. Tree Genet Genomes 4:97–112

    Article  Google Scholar 

  • Rae AM, Street NR, Robinson KM, Harris N, Taylor G (2009) Five QTL hotspots for yield in short rotation coppice bioenergy poplar: the poplar biomass loci. BMC Plant Biol 9:23

    Article  Google Scholar 

  • Raymond C (2011) Genotype by environment interactions for Pinus radiata in New South Wales, Australia. Tree Genet Genomes 7:819–833

    Article  Google Scholar 

  • Resende MFR, Muñoz P, Acosta JJ, Peter GF, Davis JM, Grattapaglia D, Resende MDV, Kirst M (2012) Accelerating the domestication of trees using genomic selection: accuracy of prediction models across ages and environments. New Phytol 193:617–624

    Article  Google Scholar 

  • Sun L, Wang Y, Yan X, Cheng T, Ma K, Yang W, Pan H, Zheng C, Zhu X, Wang J, Wu R, Zhang Q (2014) Genetic control of juvenile growth and botanical architecture in an ornamental woody plant, Prunus mume Sieb. Et Zucc. As revealed by a high-density linkage map. BMC Genet 15:S1

    Article  Google Scholar 

  • Tani N, Takahashi T, Iwata H, Mukai Y, Ujino-Ihara T, Matsumoto A, Yoshimura K, Yoshimaru H, Murai M, Nagasaka K et al (2003) A consensus linkage map for sugi (Cryptomeria japonica) from two pedigrees, based on microsatellites and expressed sequence tags. Genetics 165:1551–1568

    CAS  PubMed  PubMed Central  Google Scholar 

  • Tassinari RR, Vilela RMD, Fonseca SF, Ferreira AC, Keiko TE, Bonfim S-JO, Dario G (2016) Regional heritability mapping and genome-wide association identify loci for complex growth, wood and disease resistance traits in Eucalyptus. New Phytol 213:1287–1300

    Google Scholar 

  • Taylor J, Verbyla A (2011) R package wgaim: QTL analysis in bi-parental populations using linear mixed models. J Stat Softw 40:1–18

    Article  Google Scholar 

  • Thavamanikumar S, McManus LJ, Ades PK, Bossinger G, Stackpole DJ, Kerr R, Hadjigol S, Freeman JS, Vaillancourt RE, Zhu P et al (2014) Association mapping for wood quality and growth traits in Eucalyptus globulus ssp. globulus Labill identifies nine stable marker-trait associations for seven traits. Tree Genet Genomes 10:1661–1678

    Article  Google Scholar 

  • Thumma BR, Baltunis BS, Bell JC, Emebiri LC, Moran GF, Southerton SG (2010) Quantitative trait locus (QTL) analysis of growth and vegetative propagation traits in Eucalyptus nitens full-sib families. Tree Genet Genomes 6:877–889

    Article  Google Scholar 

  • Tsumura Y (2011) Cryptomeria. In: Kole C (ed) Wild crop relatives: genomic and breeding resources: forest trees. Springer-Verlag, Berlin Heidelberg, Berlin, pp 49–63

    Chapter  Google Scholar 

  • Tsumura Y, Kado T, Takahashi T, Tani N, Ujino-Ihara T, Iwata H (2007) Genome scan to detect genetic structure and adaptive genes of natural populations of Cryptomeria japonica. Genetics 176:2393–2403

    Article  CAS  Google Scholar 

  • Tsushima S, Koga S, Oda K, Shiraishi S (2005) Growth and wood properties of sugi (Cryptomeria japonica) cultivars planted in the Kyushu region. Journal of the Japan Wood Research Society 51:394–401

    Article  CAS  Google Scholar 

  • Uchiyama K, Iwata H, Moriguchi Y, Ujino-Ihara T, Ueno S, Taguchi Y, Tsubomura M, Mishima K, Iki T, Watanabe A, Futamura N, Shinohara K, Tsumura Y (2013) Demonstration of genome-wide association studies for identifying markers for wood property and male strobili traits in Cryptomeria japonica. PLoS One 8:e79866

    Article  Google Scholar 

  • Ueno S, Moriguchi Y, Uchiyama K, Ujino-Ihara T, Futamura N, Sakurai T, Shinohara K, Tsumura Y (2012) A second generation framework for the analysis of microsatellites in expressed sequence tags and the development of EST-SSR markers for a conifer, Cryptomeria japonica. BMC Genomics 13:136

    Article  CAS  Google Scholar 

  • Ujino-Ihara T, Iwata H, Taguchi Y, Tsumura Y (2012) Identification of QTLs associated with male strobilus abundance in Cryptomeria japonica. Tree Genet Genomes 8:1319–1329

    Article  Google Scholar 

  • Ukrainetz NK, Ritland K, Mansfield SD (2008) Identification of quantitative trait loci for wood quality and growth across eight full-sib coastal Douglas-fir families. Tree Genet Genomes 4:159–170

    Article  Google Scholar 

  • van Ooijen J (2006) JoinMap 4, software for the calculation of genetic linkage maps in experimental populations. Kyazma BV, Wageningen 33 (10.1371)

  • Verbyla AP, Cullis BR (2012) Multivariate whole genome average interval mapping: QTL analysis for multiple traits and/or environments. Theor Appl Genet 125:933–953

    Article  Google Scholar 

  • Verbyla AP, Cullis BR, Thompson R (2007) The analysis of QTL by simultaneous use of the full linkage map. Theor Appl Genet 116:95–111

    Article  Google Scholar 

  • Yang H, Liu T, Xu B, Liu C, Zhao F, Huang S (2015) QTL detection for growth and form traits in three full-sib pedigrees of Pinus elliottii var. elliottii x P. caribaea var. hondurensis hybrids. Tree Genet Genomes 11:130

    Article  Google Scholar 

  • Yoshimaru H, Ohba K, Tsurumi K, Tomaru N, Murai M, Mukai Y, Suyama Y, Tsumura Y, Kawahara T, Sakamaki Y (1998) Detection of quantitative trait loci for juvenile growth, flower bearing and rooting ability based on a linkage map of sugi (Cryptomeria japonica D. Don). Theor Appl Genet 97:45–50

    Article  CAS  Google Scholar 

  • Zobel BJ, Jett JB (1995) Genetics of wood production. Springer Science & Business Media, Berlin

    Book  Google Scholar 

Download references

Acknowledgements

The authors thank Y. Komatsu and M. Kawasaki for technical assistance, and T. Takata, K. Ogata, S. Kobayashi, K. Arai, K. Nemoto, and M. Sugiyama for the maintenance of research materials. We also thank Dr. H. Iwata for his helpful advices regarding the data analyses, Dr. J. Worth for revising the manuscript, and Dr. K. Nanko for his comments on climate data of the study sites. This study was supported by the Research Grant #201421 of the Forestry and Forest Products Research Institute.

Data archiving statement

The information about all markers used for this study has been registered in DDBJ. Marker/position information from the linkage map are submitted to TreeGenes Database.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Asako Matsumoto.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Communicated by J. Beaulieu

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Fig. S1

Climatic conditions in the three sites during the experimental years (2005-2017); a) Mean annual precipitation and temperature. b) Monthly variation of precipitation and temperature. (PPTX 850 kb)

ESM 2

(XLSX 12 kb)

ESM 3

(XLSX 14 kb)

ESM 4

(XLSX 19 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mori, H., Ueno, S., Ujino-Ihara, T. et al. Mapping quantitative trait loci for growth and wood property traits in Cryptomeria japonica across multiple environments. Tree Genetics & Genomes 15, 43 (2019). https://doi.org/10.1007/s11295-019-1346-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11295-019-1346-5

Keywords

Navigation