Skip to main content
Log in

Fluvastatin suppresses native and recombinant human P2X4 receptor function

  • Original Article
  • Published:
Purinergic Signalling Aims and scope Submit manuscript

Abstract

Statins have both cholesterol lowering and anti-inflammatory activities, whether mechanisms underlying their activities are independent remains unclear. The ATP-gated P2X4 receptor is a pro-inflammatory mediator. Here, we investigate the action of fluvastatin and other cholesterol depleting agents on native and recombinant human P2X4 receptor. Fluvastatin and mβCD suppressed P2X4-dependent calcium influx in THP-1 monocytes, without affecting P2Y receptor responses. mβCD or filipin III suppressed the current density of recombinant human P2X4 receptors. Human P2X2 was insensitive to cholesterol depletion. Cholesterol depletion had no effect on intrinsic P2X4 receptor properties as judged by ATP concentration–response relationship, receptor rundown or current decay during agonist occupancy. These data suggest fluvastatin suppresses P2X4 activity in monocytes through cholesterol depletion and not by modulating intrinsic channel properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

MβCD:

Methyl-β-cyclodextrin

References

  1. Scandinavian Simvastatin Survival Study Group (1994) Randomised trial of cholesterol lowering in 4444 patients with coronary heart disease: the Scandinavian Simvastatin Survival Study (4S). Lancet 344:1383–1389

    Google Scholar 

  2. Scalia R et al (2001) Simvastatin exerts both anti-inflammatory and cardioprotective effects in apolipoprotein E-deficient mice. Circulation 103:2598–2603

    PubMed  CAS  Google Scholar 

  3. Pruefer D et al (2002) Simvastatin inhibits inflammatory properties of Staphylococcus aureus α-toxin. Circulation 106:2104–2110

    Article  PubMed  CAS  Google Scholar 

  4. Østerud B, BjÈ-Rklid E (2003) Role of monocytes in atherogenesis. Physiol Rev 83:1069–1112

    PubMed  Google Scholar 

  5. North RA (2002) Molecular physiology of P2X receptors. Physiol Rev 82:1013–1067

    PubMed  CAS  Google Scholar 

  6. Wang L, Jacobsen SE, Bengtsson A, Erlinge D (2004) P2 receptor mRNA expression profiles in human lymphocytes, monocytes and CD34+ stem and progenitor cells. BMC Immunol 5:16

    Article  PubMed  Google Scholar 

  7. Qureshi OS, Paramasivam A, Yu JCH, Murrell-Lagnado RD (2007) Regulation of P2X4 receptors by lysosomal targeting, glycan protection and exocytosis. J Cell Sci 120:3838–3849

    Article  PubMed  CAS  Google Scholar 

  8. Sim JA, Park CK, Oh SB, Evans RJ, North RA (2007) P2X1 and P2X4 receptor currents in mouse macrophages. Br J Pharmacol 152:1283–1290

    Article  PubMed  CAS  Google Scholar 

  9. Tsuda M, Shigemoto-Mogami Y, Koizumi S, Mizokoshi A, Kohsaka S, Salter MW, Inoue K (2003) P2X4 receptors induced in spinal microglia gate tactile allodynia after nerve injury. Nature 424:778–783

    Article  PubMed  CAS  Google Scholar 

  10. Ulmann L, Hirbec H, Rassendren F (2010) P2X4 receptors mediate PGE2 release by tissue-resident macrophages and initiate inflammatory pain. EMBO J 29:2290–2300

    Article  PubMed  CAS  Google Scholar 

  11. Priel A, Silberberg SD (2004) Mechanism of ivermectin facilitation of human P2X4 receptor channels. J Gen Physiol 123:281–293

    Article  PubMed  CAS  Google Scholar 

  12. Fountain SJ, North RA (2006) A C-terminal lysine that controls human P2X4 receptor desensitization. J Biol Chem 281:15044–15049

    Article  PubMed  CAS  Google Scholar 

  13. Wareham K, Vial C, Wykes RCE, Bradding P, Seward EP (2009) Functional evidence for the expression of P2X1, P2X4 and P2X7 receptors in human lung mast cells. Br J Pharmacol 157:1215–1224

    Article  PubMed  CAS  Google Scholar 

  14. Vial C, Evans RJ (2005) Disruption of lipid rafts inhibits P2X1 receptor-mediated currents and arterial vasoconstriction. J Biol Chem 280:30705–30711

    Article  PubMed  CAS  Google Scholar 

  15. Allsopp RC, Lalo U, Evans RJ (2010) Lipid raft association and cholesterol sensitivity of P2X1-4 receptors for ATP. J Biol Chem 285:32770–32777

    Article  PubMed  CAS  Google Scholar 

  16. Liu M, Huang W, Wu D, Priestley JV (2006) TRPV1, but not P2X3, requires cholesterol for its function and membrane expression in rat nociceptors. Eur J Neurosci 24:1–6

    Article  PubMed  CAS  Google Scholar 

  17. Jones CA, Chessell IP, Simon J, Barnard EA, Miller KJ, Michel AD, Humphrey PPA (2000) Functional characterization of the P2X4 receptor orthologues. Br J Pharmacol 129:388–394

    Article  PubMed  CAS  Google Scholar 

  18. Barth K, Weinhold K, Guenther A, Linge A, Gereke M, Kasper M (2008) Characterization of the molecular interaction between caveolin-1 and the P2X receptors 4 and 7 in E10 mouse lung alveolar epithelial cells. Int J Biochem Cell Biol 40:2230–2239

    Article  PubMed  CAS  Google Scholar 

  19. Hillyard DZ, Jardine AG, McDonald KJ, Cameron AJM (2004) Fluvastatin inhibits raft dependent Fc[gamma] receptor signalling in human monocytes. Atherosclerosis 172:219–228

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Biotechnology and Biological Sciences Research Council (BBSRC). SJF is generously supported by a BBSRC David Phillips Fellowship Award.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Samuel J. Fountain.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, J., Fountain, S.J. Fluvastatin suppresses native and recombinant human P2X4 receptor function. Purinergic Signalling 8, 311–316 (2012). https://doi.org/10.1007/s11302-011-9289-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11302-011-9289-9

Keywords

Navigation