Skip to main content

Advertisement

Log in

Inhibition of P2X7 receptors improves outcomes after traumatic brain injury in rats

  • Original Article
  • Published:
Purinergic Signalling Aims and scope Submit manuscript

Abstract

Traumatic brain injury (TBI) is the leading cause of death and disability for people under the age of 45 years worldwide. Neuropathology after TBI is the result of both the immediate impact injury and secondary injury mechanisms. Secondary injury is the result of cascade events, including glutamate excitotoxicity, calcium overloading, free radical generation, and neuroinflammation, ultimately leading to brain cell death. In this study, the P2X7 receptor (P2X7R) was detected predominately in microglia of the cerebral cortex and was up-regulated on microglial cells after TBI. The microglia transformed into amoeba-like and discharged many microvesicle (MV)-like particles in the injured and adjacent regions. A P2X7R antagonist (A804598) and an immune inhibitor (FTY720) reduced significantly the number of MV-like particles in the injured/adjacent regions and in cerebrospinal fluid, reduced the number of neurons undergoing apoptotic cell death, and increased the survival of neurons in the cerebral cortex injured and adjacent regions. Blockade of the P2X7R and FTY720 reduced interleukin-1βexpression, P38 phosphorylation, and glial activation in the cerebral cortex and improved neurobehavioral outcomes after TBI. These data indicate that MV-like particles discharged by microglia after TBI may be involved in the development of local inflammation and secondary nerve cell injury.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Jennett B (1996) Epidemiology of head injury. J Neurol Neurosurg Psychiatry 60(4):362–369

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Langlois JA, Rutland-Brown W, Wald MM (2006) The epidemiology and impact of traumatic brain injury: a brief overview. J Head Trauma Rehabil 21(5):375–378

    Article  PubMed  Google Scholar 

  3. Davis AE (2000) Mechanisms of traumatic brain injury: biomechanical, structural and cellular considerations. Crit Care Nurs Q 23(3):1–13

    Article  CAS  PubMed  Google Scholar 

  4. Gaetz M (2004) The neurophysiology of brain injury. Clin Neurophysiol 115(1):4–18

    Article  CAS  PubMed  Google Scholar 

  5. Cernak I (2005) Animal models of head trauma. NeuroRx 2(3):410–422

    Article  PubMed  PubMed Central  Google Scholar 

  6. Bramlett HM, Dietrich WD (2007) Progressive damage after brain and spinal cord injury: pathomechanisms and treatment strategies. Prog Brain Res 161:125–141

    Article  PubMed  Google Scholar 

  7. Cornelius C, Crupi R, Calabrese V, Graziano A, Milone P, Pennisi G et al (2013) Traumatic brain injury: oxidative stress and neuroprotection. Antioxid Redox Signal 19(8):836–853

    Article  CAS  PubMed  Google Scholar 

  8. Wang X, Arcuino G, Takano T, Lin J, Peng WG, Wan P et al (2004) P2X7 receptor inhibition improves recovery after spinal cord injury. Nat Med 10(8):821–827

    Article  CAS  PubMed  Google Scholar 

  9. Kimbler DE, Shields J, Yanasak N, Vender JR, Dhandapani KM (2012) Activation of P2X7 promotes cerebral edema and neurological injury after traumatic brain injury in mice. PLoS One 7(7):e41229

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Franke H, Grummich B, Hartig W, Grosche J, Regenthal R, Edwards RH et al (2006) Changes in purinergic signaling after cerebral injury—involvement of glutamatergic mechanisms? Int J Dev Neurosci 24(2–3):123–132

    Article  CAS  PubMed  Google Scholar 

  11. Franke H, Schepper C, Illes P, Krugel U (2007) Involvement of P2X and P2Y receptors in microglial activation in vivo. Purinergic Signal 3(4):435–445

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Abbracchio MP, Verderio C (2006) Pathophysiological roles of P2 receptors in glial cells. Novartis Found Symp 276:91–103 discussion 12, 275-81

    Article  CAS  PubMed  Google Scholar 

  13. Turola E, Furlan R, Bianco F, Matteoli M, Verderio C (2012) Microglial microvesicle secretion and intercellular signaling. Front Physiol 3:149

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Sadallah S, Eken C, Schifferli JA (2011) Ectosomes as modulators of inflammation and immunity. Clin Exp Immunol 163(1):26–32

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Bianco F, Pravettoni E, Colombo A, Schenk U, Moller T, Matteoli M (2005) Astrocyte-derived ATP induces vesicle shedding and IL-1 beta release from microglia. J Immunol 174(11):7268–7277

    Article  CAS  PubMed  Google Scholar 

  16. Dawson G, Qin J (2011) Gilenya (FTY720) inhibits acid sphingomyelinase by a mechanism similar to tricyclic antidepressants. Biochem Biophys Res Commun 404(1):321–323

    Article  CAS  PubMed  Google Scholar 

  17. Feeney DM, Boyeson MG, Linn RT, Murray HM, Dail WG (1981) Responses to cortical injury: I. Methodology and local effects of contusions in the rat. Brain Res 211(1):67–77

    Article  CAS  PubMed  Google Scholar 

  18. Morris R (1984) Developments of a water-maze procedure for studying spatial learning in the rat. J Neurosci Methods 11(1):47–60

    Article  CAS  PubMed  Google Scholar 

  19. Vorhees CV, Williams MT (2006) Morris water maze: procedures for assessing spatial and related forms of learning and memory. Nat Protoc 1(2):848–858

    Article  PubMed  PubMed Central  Google Scholar 

  20. Fields RD, Stevens-Graham B (2002) New insights into neuron-glia communication. Science 298(5593):556–562

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Hansson E, Ronnback L (2003) Glial neuronal signaling in the central nervous system. FASEB J 17(3):341–348

    Article  CAS  PubMed  Google Scholar 

  22. Inoue K (2002) Microglial activation by purines and pyrimidines. Glia 40(2):156–163

    Article  PubMed  Google Scholar 

  23. Burnstock G (2007) Physiology and pathophysiology of purinergic neurotransmission. Physiol Rev 87(2):659–797

    Article  CAS  PubMed  Google Scholar 

  24. Burnstock G, Krugel U, Abbracchio MP, Illes P (2011) Purinergic signalling: from normal behaviour to pathological brain function. Prog Neurobiol 95(2):229–274

    Article  CAS  PubMed  Google Scholar 

  25. Burnstock G (2015) Physiopathological roles of P2X receptors in the central nervous system. Curr Med Chem 22(7):819–844

    Article  CAS  PubMed  Google Scholar 

  26. Sun L, Gao J, Zhao M, Cui J, Li Y, Yang X et al (2015) A novel cognitive impairment mechanism that astrocytic p-connexin 43 promotes neuronic autophagy via activation of P2X7R and down-regulation of GLT-1 expression in the hippocampus following traumatic brain injury in rats. Behav Brain Res 291:315–324

    Article  CAS  PubMed  Google Scholar 

  27. Zimmermann H, Braun N (1999) Ecto-nucleotidases—molecular structures, catalytic properties, and functional roles in the nervous system. Prog Brain Res 120:371–385

    Article  CAS  PubMed  Google Scholar 

  28. Filippini A, Taffs RE, Agui T, Sitkovsky MV (1990) Ecto-ATPase activity in cytolytic T-lymphocytes. Protection from the cytolytic effects of extracellular ATP. J Biol Chem 265(1):334–340

    CAS  PubMed  Google Scholar 

  29. Sikora A, Liu J, Brosnan C, Buell G, Chessel I, Bloom BR (1999) Cutting edge: purinergic signaling regulates radical-mediated bacterial killing mechanisms in macrophages through a P2X7-independent mechanism. J Immunol 163(2):558–561

    CAS  PubMed  Google Scholar 

  30. Ferrari D, Chiozzi P, Falzoni S, Dal Susino M, Collo G, Buell G et al (1997) ATP-mediated cytotoxicity in microglial cells. Neuropharmacology 36(9):1295–1301

    Article  CAS  PubMed  Google Scholar 

  31. Zhang Z, Chen G, Zhou W, Song A, Xu T, Luo Q et al (2007) Regulated ATP release from astrocytes through lysosome exocytosis. Nat Cell Biol 9(8):945–953

    Article  CAS  PubMed  Google Scholar 

  32. Beigi R, Kobatake E, Aizawa M, Dubyak GR (1999) Detection of local ATP release from activated platelets using cell surface-attached firefly luciferase. Am J Phys 276(1 Pt 1):C267–C278

    CAS  Google Scholar 

  33. Dubyak GR, el-Moatassim C (1993) Signal transduction via P2-purinergic receptors for extracellular ATP and other nucleotides. Am J Phys 265(3 Pt 1):C577–C606

    CAS  Google Scholar 

  34. Ciccarelli R, Ballerini P, Sabatino G, Rathbone MP, D'Onofrio M, Caciagli F et al (2001) Involvement of astrocytes in purine-mediated reparative processes in the brain. Int J Dev Neurosci 19(4):395–414

    Article  CAS  PubMed  Google Scholar 

  35. Hoegen T, Tremel N, Klein M, Angele B, Wagner H, Kirschning C et al (2011) The NLRP3 inflammasome contributes to brain injury in pneumococcal meningitis and is activated through ATP-dependent lysosomal cathepsin B release. J Immunol 187(10):5440–5451

    Article  CAS  PubMed  Google Scholar 

  36. Chavez-Valdez R, Martin LJ, Northington FJ (2012) Programmed necrosis: a prominent mechanism of cell death following neonatal brain injury. Neurol Res Int 2012:257563

    PubMed  PubMed Central  Google Scholar 

  37. Robson SC, Sevigny J, Zimmermann H (2006) The E-NTPDase family of ectonucleotidases: structure function relationships and pathophysiological significance. Purinergic Signal 2(2):409–430

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Abbracchio MP, Burnstock G (1994) Purinoceptors: are there families of P2X and P2Y purinoceptors? Pharmacol Ther 64(3):445–475

    Article  CAS  PubMed  Google Scholar 

  39. Burnstock G (2008) Purinergic signalling and disorders of the central nervous system. Nat Rev Drug Discov 7(7):575–590

    Article  CAS  PubMed  Google Scholar 

  40. Collo G, Neidhart S, Kawashima E, Kosco-Vilbois M, North RA, Buell G (1997) Tissue distribution of the P2X7 receptor. Neuropharmacology 36(9):1277–1283

    Article  CAS  PubMed  Google Scholar 

  41. Jimenez-Pacheco A, Mesuret G, Sanz-Rodriguez A, Tanaka K, Mooney C, Conroy R et al (2013) Increased neocortical expression of the P2X7 receptor after status epilepticus and anticonvulsant effect of P2X7 receptor antagonist A-438079. Epilepsia 54(9):1551–1561

    Article  CAS  PubMed  Google Scholar 

  42. Ryu JK, McLarnon JG (2011) Block of purinergic P2X(7) receptor is neuroprotective in an animal model of Alzheimer's disease. Neuroreport 19(17):1715–1719

    Article  Google Scholar 

  43. Kim JE, Ryu HJ, Yeo SI, Kang TC (2010) P2X7 receptor regulates leukocyte infiltrations in rat frontoparietal cortex following status epilepticus. J Neuroinflammation 7:65

    Article  PubMed  PubMed Central  Google Scholar 

  44. Peng W, Cotrina ML, Han X, Yu H, Bekar L, Blum L et al (2009) Systemic administration of an antagonist of the ATP-sensitive receptor P2X7 improves recovery after spinal cord injury. Proc Natl Acad Sci U S A 106(30):12489–12493

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Sharp AJ, Polak PE, Simonini V, Lin SX, Richardson JC, Bongarzone ER et al (2008) P2X7 deficiency suppresses development of experimental autoimmune encephalomyelitis. J Neuroinflammation 5:33

    Article  PubMed  PubMed Central  Google Scholar 

  46. Wang YC, Cui Y, Cui JZ, Sun LQ, Cui CM, Zhang HA et al (2015) Neuroprotective effects of brilliant blue G on the brain following traumatic brain injury in rats. Mol Med Rep 12(2):2149–2154

    Article  CAS  PubMed  Google Scholar 

  47. MacKenzie A, Wilson HL, Kiss-Toth E, Dower SK, North RA, Surprenant A (2001) Rapid secretion of interleukin-1beta by microvesicle shedding. Immunity 15(5):825–835

    Article  CAS  PubMed  Google Scholar 

  48. Xiang Z, Chen M, Ping J, Dunn P, Lv J, Jiao B et al (2006) Microglial morphology and its transformation after challenge by extracellular ATP in vitro. J Neurosci Res 83(1):91–101

    Article  CAS  PubMed  Google Scholar 

  49. Li J, Li X, Jiang X, Yang M, Yang R, Burnstock G et al (2017) Microvesicles shed from microglia activated by the P2X7-p38 pathway are involved in neuropathic pain induced by spinal nerve ligation in rats. Purinergic Signal 13(1):13–26

    Article  CAS  PubMed  Google Scholar 

  50. Raposo G, Stoorvogel W (2013) Extracellular vesicles: exosomes, microvesicles, and friends. J Cell Biol 200(4):373–383

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Davalos D, Grutzendler J, Yang G, Kim JV, Zuo Y, Jung S (2005) ATP mediates rapid microglial response to local brain injury in vivo. Nat Neurosci 8(6):752–758

    Article  CAS  PubMed  Google Scholar 

  52. Ferrari D, Pizzirani C, Adinolfi E, Lemoli RM, Curti A, Idzko M et al (2006) The P2X7 receptor: a key player in IL-1 processing and release. J Immunol 176(7):3877–3883

    Article  CAS  PubMed  Google Scholar 

  53. Bachstetter AD, Rowe RK, Kaneko M, Goulding D, Lifshitz J, Van Eldik LJ (2013) The p38alpha MAPK regulates microglial responsiveness to diffuse traumatic brain injury. J Neurosci 33(14):6143–6153

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Mullershausen F, Zecri F, Cetin C, Billich A, Guerini D, Seuwen K (2009) Persistent signaling induced by FTY720-phosphate is mediated by internalized S1P1 receptors. Nat Chem Biol 5(6):428–434

    Article  CAS  PubMed  Google Scholar 

  55. McGraw J, Hiebert GW, Steeves JD (2001) Modulating astrogliosis after neurotrauma. J Neurosci Res 63(2):109–115

    Article  CAS  PubMed  Google Scholar 

  56. Sofroniew MV (2009) Molecular dissection of reactive astrogliosis and glial scar formation. Trends Neurosci 32(12):638–647

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Giulian D, Woodward J, Young DG, Krebs JF, Lachman LB (1998) Interleukin-1 injected into mammalian brain stimulates astrogliosis and neovascularization. J Neurosci 8(7):2485–2490

    Google Scholar 

  58. Woiciechowsky C, Schoning B, Stoltenburg-Didinger G, Stockhammer F, Volk HD (2004) Brain-IL-1 beta triggers astrogliosis through induction of IL-6: inhibition by propranolol and IL-10. Med Sci Monit 10(9):BR325–BR330

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of the People’s Republic of China (81471260 to Z. Xiang) and by the Qingnian Science Foundation of Changzheng Hospital, Shanghai, People’s Republic of China (2016CZQN05 to R. Ji).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Hongbin Yuan or Zhenghua Xiang.

Ethics declarations

Conflicts of interest

Xiaofeng Liu declares that she has no conflict of interest.

Zhengqing Zhao declares that she has no conflict of interest.

Ruihua Ji declares that she has no conflict of interest.

Jiao Zhu declares that she has no conflict of interest.

Qian-Qian Sui declares that she has no conflict of interest.

Gillian E. Knight declares that she has no conflict of interest.

Geoffrey Burnstock declares that he has no conflict of interest.

Cheng He declares that she has no conflict of interest.

Hongbin Yuan declares that she has no conflict of interest.

Zhenghua Xiang declares that she has no conflict of interest.

Ethical approval

All experimental procedures were approved by the Institutional Animal Care and Use Committee at Second Military Medical University and conformed to the UK Animals (Scientific Procedures) Act 1986 and associated guidelines on the ethical use of animals.

Electronic supplementary material

Supplementary Figure 1

P2X7R protein antibody specificity test. Lane 1: the immunoreactive bands are located around 72 kd marker; Lane 2: preabsorption of the P2X7R antisera with its peptide antigen, which resulted in the absence of the bands. This data showed that P2X7R antibody was specificity. The protocol for this antibody specificity test was same as that used in the part of Western Blot except that 1 ml P2X7R antibody (1:1000) solution in 2% BSA PBS was reabsorbed with 5 μg P2X7R peptides supplied by Alomone for 3 h at room temperature. (JPEG 794 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, X., Zhao, Z., Ji, R. et al. Inhibition of P2X7 receptors improves outcomes after traumatic brain injury in rats. Purinergic Signalling 13, 529–544 (2017). https://doi.org/10.1007/s11302-017-9579-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11302-017-9579-y

Keywords

Navigation