Skip to main content

Advertisement

Log in

A metabolomics approach exploring the function of the ESX-3 type VII secretion system of M. smegmatis

  • Original Article
  • Published:
Metabolomics Aims and scope Submit manuscript

Abstract

The genome of Mycobacterium, including Mycobacterium tuberculosis, contains five copies of a cluster of genes encoding a novel type VII secretion system, named the ESX gene cluster region. This ESX-3 gene cluster is essential for in vitro growth and is thought to play a role in iron and zinc homeostasis, however, its exact functionality remains an enigma. A metabolomics research approach was subsequently used to compare the metabolite profiles of a M. smegmatis ESX-3 knockout strain to that a wild type parental strain, in order to elucidate its functionality from a metabolic perspective. Statistical analysis of the GC–MS generated data showed a clear separation between the wild type and knockout sample groups, based on the analysed metabolite profiles of these organisms. Of all the metabolite markers identified, various amino acids and metabolite pathways related to these, appeared to be most affected by the ESX-3 knockout, especially those with enzymes regulated by iron and zinc, supporting previous genomics and proteomics generated hypotheses and findings. This study is the first to demonstrate the capacity of using metabolomics, in conjunction with previous genomics and proteomic findings, to identify underlying metabolic changes and confirm previous hypotheses related to the functionality of ESX-3 in Mycobacterium growth and survival.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Abdallah, A. M., Gey van Pittius, N. C., Champion, P. A., et al. (2007). Type VII secretion—Mycobacteria show the way. Nature Reviews Microbiology, 5, 883–891.

    Article  PubMed  CAS  Google Scholar 

  • Bino, R. J., Hall, R. D., Fiehn, O., et al. (2004). Potential for metabolomics as a functional tool for genomics. Trends in Plant Science, 9, 418–425.

    Article  PubMed  CAS  Google Scholar 

  • Bitter, W., Houben, E. N. G., Bottai, D., et al. (2009). Systematic genetic nomenclature for type VII secretion systems. PLoS Pathogens, 5(10), e1000507.

    Article  PubMed  Google Scholar 

  • Blenconwe, D. K., & Morby, A. P. (2003). Zn(II) metabolism in prokaryotes. FEMS Microbiology Reviews, 27(2–3), 291–311.

    Article  Google Scholar 

  • Brereton, R. G. (2003). Chemometrics—data analysis for the laboratory and chemical plant (p. 246). England: John Wiley & Sons Ltd west Sussex.

    Google Scholar 

  • Chong, I. G., & Jun, C. H. (2005). Performance of some variable selections methods when multicollinearity is present. Chemometrics and Intelligent Laboratory Systems, 78(1–2), 103–112.

    Article  CAS  Google Scholar 

  • De Carvalho, L. P. S., Fischer, S. M., Marrero, J., Nathan, C., Ehrt, S., & Rhee, K. Y. (2010). Metabolomics of Mycobacterium tuberculosis reveals compartmentalized co-catabolism of carbon substrates. Cell, 17, 1122–1131.

    Google Scholar 

  • De Voss, J. J., Rutter, K., Schroeder, G., & Barry, C. E. III. (1999). Iron acquisition and metabolism by Mycobacteria. Journal of Bacteriology, 181(15), 4443–4451.

    PubMed  Google Scholar 

  • Ellis, S. M., & Steyn, H. S. (2003). Practical significance (effect sizes) versus or in combination with statistical significance (p-values). Management Dynamics, 12(4), 51–53.

    Google Scholar 

  • Fiehn, O., Kopka, J., Trethewey, R. N., & Willmitzer, L. (2000). Identification of uncommon plant metabolites based on calculation of elemental compositions using gas chromatography and quadrupole mass spectrometry. Analytical Chemistry, 72, 3573–3580.

    Article  PubMed  CAS  Google Scholar 

  • Gey van Pittius, N. C., Gamielden, J., Hide, W., Brown, G. D., Siezen, R. J., & Beyers, A. D. (2001). The ESAT-6 gene cluster of Mycobacterium tuberculosis and other G + C gram-positive bacteria. Genome Biology, 2(10), 1–18.

    Article  Google Scholar 

  • Gold, B., Rodriguez, G. M., Marras, S. A., Pentecost, M., & Smith, I. (2001). The Mycobacterium tuberculosis IdeR is a dual functional regulator that controls transcription of genes involved in iron acquisition, iron storage and survival in macrophages. Molecular Microbiology, 42, 851–865.

    Article  PubMed  CAS  Google Scholar 

  • Gonzalez, J. C., Peariso, K., Penner-Hahn, J. E., & Matthews, R. G. (1996). Cobalamin-independent methionine synthase from Escherichia coli: A zinc metalloenzyme. Biochemistry, 35(38), 12228–12234.

    Article  PubMed  CAS  Google Scholar 

  • Gordhan, B. G., & Parish, T. (2001). Mycobacterium tuberculosis protocols. New Jersey: Humana Press.

    Google Scholar 

  • Jaki, B. U., Franzblau, S. G., Cho, S. H., & Pauli, G. F. (2006). Development of an extraction method for mycobacterial metabolome analysis. Journal of Pharmaceutical and Biomedical Analysis, 41(1), 196–200.

    Article  PubMed  CAS  Google Scholar 

  • Jang, H., Nde, C., Toghrol, F., & Bentley, W. E. (2009). Microarray analysis of Mycobacterium bovis BCG revealed induction of iron acquisition related genes in response to hydrogen peroxide. Environmental Science and Technology, 43, 9465–9472.

    Article  PubMed  CAS  Google Scholar 

  • Kanani, H., Chrysanthopoulos, P. K., & Klapa, M. I. (2008). Standardizing GC-MS metabolomics. Journal of Chromotography, 871, 191–201.

    Article  CAS  Google Scholar 

  • Kanehisa, M., Goto, S., Kawashima, S., & Nakaya, A. (2002). The KEGG databases at GenomeNet. Nucleic Acids Research, 30(1), 42–46.

    Article  PubMed  CAS  Google Scholar 

  • Koekemoer, G., & Swanepoel, J. W. H. (2008). A semi-parametric method for transforming data to normality. Statistics and Computing, 18, 241–257.

    Article  Google Scholar 

  • Koon, N., Squire, C. J., & Baker, E. N., (2004). Crystal structure of LeuA from Mycobacterium tuberculosis, a key enzyme in the leucine biosynthesis. Proclamations of the National Academy of Sciences. U.S.A., 101(22), 8295–8300.

    Google Scholar 

  • Maciag, A., Dainese, E., Rodriguez, G. M., et al. (2007). Global analysis of the Mycobacterium Tuberculosis Zur (FurB) regulon. Journal of Bacteriology, 189(3), 730–740.

    Article  PubMed  CAS  Google Scholar 

  • Maciag, A., Piazza, A., Riccardi, G., & Milano, A. (2009). Transcriptional analysis of ESAT-6 cluster 3 in Mycobacterium smegmatis. BMC Microbiology, 9, 48.

    Article  PubMed  Google Scholar 

  • McCready, K. A., & Ratledge, C. (1978). Amounts of iron, heme and related compounds in Mycobacterium smegmatis grown in various concentrations of iron. Biochemistry Society Transactions, 6, 421–423.

    CAS  Google Scholar 

  • Meissner-Roloff, R., Koekemoer, G., Warren, R. M., & Loots, D. T., (2012). A metabolomics investigation of a hyper- and hypo-virulent phenotype of Beijing lineage M. tuberculosis. Metabolomics, in press.

  • Miethke, M., Westers, H., Blom, E., Kuipers, O. P., & Marahiel, M. A. (2006). Iron starvation triggers the stringent response and induces amino acid biosynthesis for bacillibactin production in Bacillus subtilis. Journal of Bacteriology, 188(24), 8655–8657.

    Article  PubMed  CAS  Google Scholar 

  • Olivier, I., & Loots, D. T. (2012). A metabolomics approach to characterize and identify various Mycobacterium species. Journal of Microbial Methods, 88, 419–426.

    Article  Google Scholar 

  • Paley, S. M., & Karp, P. D. (2006). The pathway tools cellular overview diagram and omics viewer. Nucleic Acids Research, 34(13), 3771–3778.

    Article  PubMed  CAS  Google Scholar 

  • Parish, T., & Stoker, N. G. (2000). Use of a flexible cassette method to generate a double unmarked Mycobacterium tuberculosis tlyAplcABC mutant by gene replacement. Microbiology, 146, 1969–1975.

    PubMed  CAS  Google Scholar 

  • Pejchal, R., & Ludwig, M. L. (2005). Cobalamin-independent methionine synthase (MetE): A face-to-face double barrel that evolved by gene duplication. PLoS Biology, 3(2), e31.

    Article  PubMed  Google Scholar 

  • Polansky, A. M., & Baker, E. R. (2000). Multistage plug-in bandwidth selection for kernel distribution function estimates. Journal of Statistical Computation and Simulation, 65, 63–80.

    Article  Google Scholar 

  • Ratledge, C., & Dover, L. G. (2000). Iron metabolism in pathogenic bacteria. Annual Reviews in Microbiology, 54, 881–941.

    Article  CAS  Google Scholar 

  • Rodrigeuz, G. M., Gold, M., Gomez, M., Dussurget, O., & Smith, I. (1999). Identification and characterization of two divergently transcribed iron regulated genes in Mycobacterium tuberculosis. Tuberculosis and Lung Disease., 79(5), 287–298.

    Article  Google Scholar 

  • Rodriguez, G. M., & Smith, I. (2003). Mechanisms of iron regulation in mycobacteria: Role in physiology and virulence. Molecular Microbiology, 47, 1485–1494.

    Article  PubMed  CAS  Google Scholar 

  • Rodriguez, G. M., Voskuil, M. I., Gold, B., Schoolnik, G. K., & Smith, I. (2002). ideR, an essential gene in Mycobacterium tuberculosis: Role of IdeR in Iron-dependant gene expression, iron metabolism and oxidative stress response. Infection and Immunity, 70, 3371–3381.

    Article  PubMed  CAS  Google Scholar 

  • Sassetti, C. M., Boyd, D. H., & Rubin, E. J. (2003). Genes required for mycobacterial growth defined by high density mutagenesis. Molecular Microbiology, 48(1), 77–84.

    Article  PubMed  CAS  Google Scholar 

  • Serafini, A., Boldrin, F., Palù, G., & Manganelli, R. (2009). Characterization of a Mycobacterium tuberculosis ESX-3 conditional mutant: Essentiality and rescue by iron and zinc. Journal of Bacteriology, 191(20), 6340–6344.

    Article  PubMed  CAS  Google Scholar 

  • Siegrist, M. S., Unnikrishnan, M., McConnell, M. J., et al. (2009). Mycobacterial Esx-3 is required for mycobactin-mediated iron acquisition. Proclamations of the National Academy of Sciences. U.S.A., 106(44), 18792–18797.

    Google Scholar 

  • Smith, A. W., Poyner, D. R., Hughes, K., & Lambert, P. A. (1994). Siderophore activity of myo-inositol hexakisphosphate in Pseudomonas aeruginosa. Journal of Bacteriology, 176(12), 3455–3459.

    PubMed  CAS  Google Scholar 

  • Tang, Y. J., Shui, W., Myers, S., Feng, X., Bertozzi, C., & Keasling, J. D. (2009). Central metabolism in Mycobacterium smegmatis during the transition from O2-rich to O2-poor conditions as studied by isotopomer-assisted metabolite analysis. Biotechnology Letters, 31, 1233–1240.

    Article  PubMed  CAS  Google Scholar 

  • Touati, D. (2000). Iron and oxidative stress in bacteria. Archives of Biochemistry and Biophysics, 373(1), 1–6.

    Article  PubMed  CAS  Google Scholar 

  • WHO. (2008). World Health Organization: Global tuberculosis control: Surveillance, planning and financing. Switzerland: WHO press.

    Google Scholar 

  • Yellaboina, S., Ranjan, S., Vindal, V., & Ranjan, A. (2006). Comparative analysis of iron regulated genes in mycobacteria. FEBS Letters, 580(11), 2567–2576.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Edith Machowski for generously providing the p2NIL and pGOAL17 vectors used in the construction of the M. smegmatis ESX-3 knockout strain, and Dr Gerhard Koekemoer for assisting in the bioinformatics.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Du Toit Loots.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 43 kb)

Supplementary material 2 (CSV 138 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Loots, D.T., Meissner-Roloff, R.J., Newton-Foot, M. et al. A metabolomics approach exploring the function of the ESX-3 type VII secretion system of M. smegmatis . Metabolomics 9, 631–641 (2013). https://doi.org/10.1007/s11306-012-0481-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11306-012-0481-x

Keywords

Navigation