Skip to main content

Advertisement

Log in

High-Yield, Automated Radiosynthesis of 2-(1-{6-[(2-[18F]Fluoroethyl)(methyl)amino]-2-naphthyl}ethylidene)malononitrile ([18F]FDDNP) Ready for Animal or Human Administration

  • Research Article
  • Published:
Molecular Imaging and Biology Aims and scope Submit manuscript

Abstract

The biomarker 2-(1-{6-[(2-[18F]fluoroethyl)(methyl)amino]-2-naphthyl}ethylidene)malononitrile ([18F]FDDNP) is used as a positron emission tomography (PET) imaging probe for Alzheimer’s disease and other neurodegenerative diseases. A high-yield and fully automated synthesis of [18F]FDDNP—along with the synthesis and characterization of non-radioactive FDDNP, a fluorescent probe derived from 2-(1,1-dicyanopropenyl-2)-6-dimethylaminonaphthalene (DDNP)—are reported. Radiofluorination of the tosyloxy precursor 2-{[6-(2,2-dicyano-1-methylvinyl)-2-naphthyl](methyl)amino}ethyl-4-methylbenzenesulfonate (DDNPTs) with K18F/Kryptofix 2.2.2. yielded chemically (>99%) and radiochemically (>99%) pure [18F]FDDNP in high radiochemical yields (40–60%; n> 120), with specific activities ranging from 4 to 8 Ci/μmol at the end of synthesis (90 minutes). Both remote, semiautomated and automated synthesis procedures are described. Either approach provides a reliable method for production of large quantities (110–170 mCi from 500 mCi of [18F]fluoride) of [18F]FDDNP allowing for multiple PET experiments in the same day or for distribution of the tracer from a single cyclotron facility to PET imaging centers at various geographical distances.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig.1
Fig.2
Scheme 2
Fig.3
Fig.4
Scheme 3

Similar content being viewed by others

References

  1. Evans DA (1990) Estimated prevalence of Alzheimer’s disease in the United States. Milbank Q 68:267–289

    Article  PubMed  CAS  Google Scholar 

  2. Salmon DP, Lange KL (2001) Cognitive screening and neuropsychological assessment in early Alzheimer’s disease. Clin Geriatr Med 17:229–254

    Article  PubMed  CAS  Google Scholar 

  3. Vickers JC, Dickson TC, Adlard PA, et al. (2000) The cause of neuronal degeneration in Alzheimer’s disease. Prog Neurobiol 60:139–165

    Article  PubMed  CAS  Google Scholar 

  4. Braak H, Braak E (1991) Neuropathological staging of Alzheimer-related changes. Acta Neuropathol 82:239–259

    Article  PubMed  CAS  Google Scholar 

  5. Hof PR (1997) Morphology and neurochemical characteristics of the vulnerable neurons in brain aging and Alzheimer’s disease. Eur Neurol 37:71–81

    PubMed  CAS  Google Scholar 

  6. Glenner GG, Eanes ED, Page, DL (1972) The relation of the properties of Congo red-stained amyloid fibrils to the β-conformation. J Histochem Cytochem 20:821–826

    PubMed  CAS  Google Scholar 

  7. Jacobson A, Petrič A, Hogenkamp D, et al. (1996) 1,1-Dicyano-2-(6-dimethylaminonaphthalen-2-yl)propene (DDNP): a solvent polarity and viscosity sensitive fluorophore for fluorescence microscopy. J Am Chem Soc 118:5572–5579

    Article  CAS  Google Scholar 

  8. Agdeppa ED, Kepe V, Liu J, et al. (2001) Binding characteristics of radiofluorinated 6-dialkylamino-2-naphthylethylidene derivatives as positron emission tomography imaging probes for β-amyloid plaques in Alzheimer’s disease. J Neurosci 21:RC189 (1–5)

    Google Scholar 

  9. Barrio JR, Huang S-C, Cole G, et al. (1999) PET imaging of tangles and plaques in Alzheimer disease with a highly hydrophobic probe. J Labelled Compd Radiopharm 42 (Suppl1):S194–S195

    Google Scholar 

  10. Agdeppa ED, Kepe V, Liu J, et al. (2003) 2-Dialkylamino-6-acylmalononitrile substituted naphthalenes (DDNP analogs): novel diagnostic and therapeutic tools in Alzheimer’s disease. Mol Imaging Biol 5:404–417

    Article  PubMed  Google Scholar 

  11. Agdeppa ED, Kepe V, Petriè A, et al. (2003) In vitro detection of (S)-naproxen and ibuprofen binding to plaques in the Alzheimer’s brain using the positron emission tomography molecular imaging probe 2-(1-{6-[(2[F-18]fluoroethyl)(methyl)amino]-2-naphthyl}ethylidene)malononitrile. Neuroscience 117:723–730

    Article  PubMed  CAS  Google Scholar 

  12. Shoghi-Jadid K, Small GW, Agdeppa ED, et al. (2002) Localization of neurofibrillary tangles and beta-amyloid plaques in the brains of living patients with Alzheimer disease. Am J Geriatr Psychiatry 10:24–35

    Article  PubMed  Google Scholar 

  13. Kepe V, Barrio JR, Huang S-C, et al. (2006) Serotonin 1A receptors in the living brain of Alzheimer’s disease patients. Proc Natl Acad Sci USA 103:702–707

    Article  PubMed  CAS  Google Scholar 

  14. Kepe V, Cole GM, Liu J, et al. (2005) [18F]FDDNP microPET imaging of β-amyloid deposits in the living brain of triple transgenic rat model of β-amyloid deposition. Mol Imaging Biol 7:105

    Google Scholar 

  15. Bresjanac M, Smid LM, Vovko TD, et al. (2003) Molecular-imaging probe 2-(1-{6-[(2-fluoroethyl)(methyl)amino]-2-naphthyl}ethylidene) malononitrile labels prion plaques in vitro. J Neurosci 23:8029–8033

    PubMed  CAS  Google Scholar 

  16. Kurihara A, Pardridge WM (2000) Aβ1–40 peptide radiopharmaceuticals for brain amyloid imaging: 111In chelation, conjugation to poly(ethylene glycol)-biotin linkers, and autoradiography with Alzheimer’s disease brain sections. Bioconjug Chem 11:380–386

    Article  PubMed  CAS  Google Scholar 

  17. Harpstrite SE, Prior J, Piwnica-Worms D, et al. (2005) Peptide conjugates for imaging β-amyloid in the brain. J Labelled Compd Radiopharm 48:S228

    Google Scholar 

  18. Kung HF, Kung M-P, Zhuang ZP, et al. (2003) Iodinated tracers for imaging amyloid plaques in the brain. Mol Imaging Biol 5:418–426

    Article  PubMed  Google Scholar 

  19. Cai L, Chin FT, Pike VW, et al. (2004) Synthesis and evaluation of two 18F-labeled 6-iodo-2-(4′-N,N-dimethylamino)phenylimidazo[1,2-a]pyridine derivatives as prospective radioligands for β-amyloid in Alzheimer’s disease. J Med Chem 47:2208–2218

    Article  PubMed  CAS  Google Scholar 

  20. Suemoto T, N. Okamura N, Shiomitsu T, et al. (2004) In vivo labeling of amyloid with BF-108. Neurosci Res 48:65–74

    Article  PubMed  CAS  Google Scholar 

  21. Okamura N, Suemoto T, Shimadzu H, et al. (2004) Styrylbenzoxazole derivatives for in vivo imaging of amyloid plaques in the brain. J Neurosci 24:2535–2541

    Article  PubMed  CAS  Google Scholar 

  22. Kumar P, Zheng W, McQuarrie SA, et al. (2005) 18F-FESB: synthesis and automated radiofluorination of a novel 18F-labeled PET tracer for β-amyloid plaques. J Labelled Compd Radiopharm 48:983–996

    Article  CAS  Google Scholar 

  23. Ono M, Yoshida N, Ishibashi K, et al. (2005) Radioiodinated flavones for in vivo imaging of β-amyloid plaques in the brain. J Med Chem 48:7253–7260

    Article  PubMed  CAS  Google Scholar 

  24. Klunk WE, Engler H, Nordberg A, et al. (2004) Imaging brain amyloid in Alzheimer’s disease with Pittsburgh Compound-B. Ann Neurol 55:306–319

    Article  PubMed  CAS  Google Scholar 

  25. Verhoeff NP, Wilson AA, Takeshita S, et al. (2004) In-vivo imaging of Alzheimer disease beta-amyloid with [11C]SB-13 PET. Am J Geriatr Psychiatry 12:584–595

    Article  PubMed  Google Scholar 

  26. Petrič A, Špes T, Barrio JR (1998) Novel fluorescent reactive dyes as intermediates for the preparation of UV and Vis wavelength fluorescent probes. Monatsh Chem 129:777–786

    Google Scholar 

  27. Nebeling B, Padgett HC (2006) explora RN: a general purpose and fully automated nucleophilic [18F]fluorination system. Mol Imaging Biol 8:96

    Google Scholar 

  28. Satyamurthy N, Amarasekera B, Alvord CW, Barrio JR, Phelps ME (2002) Tantalum [18O]water target for the production of [18F]fluoride with high reactivity for the preparation of 2-deoxy-2-[18F]fluoro-d-glucose. Mol Imaging Biol 4:65–70

    Article  PubMed  CAS  Google Scholar 

  29. Golubev AS, Schedel H, Radics G, et al. (2004) Hexafluoroacetone as a protecting and activating reagent: 5,5-difluoro- and trans-5-fluoropipecolic acids from glutamic acid. Tetrahedron Lett 45:1445–1447

    Article  CAS  Google Scholar 

  30. Patai S, Rappoport Z (1962) Nucleophilic attack on carbon–carbon double bonds. II. Cleavage of arylmethylenemalononitriles by water in 95% ethanol. J Chem Soc 383–391

  31. Bernasconi CF, Howard KA, Kanavarioti A (1984) Nucleophilic addition to olefins. 11. Kinetics of the reversible hydrolysis of benzylidenemalononitrile in water. J Am Chem Soc 106:6827–6835

    Article  CAS  Google Scholar 

  32. Žabjek A, Petrič A (1999) A general method for the alkaline cleavage of enolisable ketones. Tetrahedron Lett 40:6077–6078

    Article  Google Scholar 

  33. Wellenfels K, Friedrich K, Rieser J, et al. (1976) The analogy between O and C(CN)2. Angew Chem Int Ed Engl 15:261–270

    Article  Google Scholar 

  34. Karlsen H, Songe PH, Sunsby LK, et al. (2001) Regiochemistry in alkylation, acylation and methoxycarbonylation of alkali salts from 2-substituted alkenylpropanedinitriles. J Chem Soc, Perkin Trans 1:497–507

    Article  Google Scholar 

Download references

Acknowledgments

The authors would like to thank the staff at the UCLA Biomedical Cyclotron for the help provided during the optimization of the [18F]FDDNP radiosynthesis. This work was supported by Department of Energy grant DE-FC03-02ER-ER63420.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jorge R. Barrio PhD.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, J., Kepe, V., Žabjek, A. et al. High-Yield, Automated Radiosynthesis of 2-(1-{6-[(2-[18F]Fluoroethyl)(methyl)amino]-2-naphthyl}ethylidene)malononitrile ([18F]FDDNP) Ready for Animal or Human Administration. Mol Imaging Biol 9, 6–16 (2007). https://doi.org/10.1007/s11307-006-0061-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11307-006-0061-4

Key words

Navigation