Skip to main content
Log in

Noninvasive and Quantitative Assessment of In Vivo Angiogenesis Using RGD-Based Fluorescence Imaging of Subcutaneous Sponges

  • Brief Article
  • Published:
Molecular Imaging and Biology Aims and scope Submit manuscript

Abstract

Purpose

There is a real need to adapt simple and reproducible imaging methodologies to evaluate noninvasively pro- and antiangiogenic activities of new treatments in a physiological context in mice.

Procedure

The angiogenic response to fibroblast growth factor 2 (FGF-2) in a model of subcutaneously implanted cellulose sponges was measured in parallel after an intravenous injection of a fluorescent αvβ3 integrin-targeting molecule (AngioloneTM) and an fluorescence diffuse optical tomography optical imaging system and by measuring the hemoglobin content in the sponges.

Results

Optical measurements of angiogenesis correlated perfectly with the values obtained using hemoglobin quantification. This assay can be used to follow the activity of a pro- or antiangiogenic treatment like demonstrated after FGF-2 or angiostatin, respectively.

Conclusion

The perfectly controlled quality of cellulose sponges combined to this noninvasive optical method allow rapid, accurate, and reproducible measurements of angiogenic activities in vivo at the preclinical level.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  1. Folkman J (1971) Tumor angiogenesis: therapeutic implications. N Engl J Med 285:1182–1186

    Article  PubMed  CAS  Google Scholar 

  2. Ferrara N, Hillan KJ, Gerber HP et al (2004) Discovery and development of bevacizumab, an anti-VEGF antibody for treating cancer. Nat Rev Drug Discov 3:391–400

    Article  PubMed  CAS  Google Scholar 

  3. Pircher A, Hilbe W, Heidegger I et al (2011) Biomarkers in tumor angiogenesis and anti-angiogenic therapy. Int J Mol Sci 12:7077–7099

    Article  PubMed  CAS  Google Scholar 

  4. Vailhe B, Vittet D, Feige JJ (2001) In vitro models of vasculogenesis and angiogenesis. Lab Investig J Tech Methods Pathol 81:439–452

    Article  CAS  Google Scholar 

  5. Beaumont M, Lemasson B, Farion R et al (2009) Characterization of tumor angiogenesis in rat brain using iron-based vessel size index MRI in combination with gadolinium-based dynamic contrast-enhanced MRI. J Cereb Blood Flow Metab Off J Int Soc Cereb Blood Flow Metab 29:1714–1726

    Article  Google Scholar 

  6. Beaumont M, Odame I, Babyn PS et al (2009) Accurate liver T2 measurement of iron overload: a simulations investigation and in vivo study. J Magn Reson Imaging 30:313–320

    Article  PubMed  Google Scholar 

  7. Fukumura D, Jain RK (2008) Imaging angiogenesis and the microenvironment. APMIS 116:695–715

    Article  PubMed  CAS  Google Scholar 

  8. Vakoc BJ, Lanning RM, Tyrrell JA et al (2009) Three-dimensional microscopy of the tumor microenvironment in vivo using optical frequency domain imaging. Nat Med 15:1219–1223

    Article  PubMed  CAS  Google Scholar 

  9. Jin ZH, Josserand V, Foillard S et al (2007) In vivo optical imaging of integrin alphaV-beta3 in mice using multivalent or monovalent cRGD targeting vectors. Mol Cancer 6:41

    Article  PubMed  Google Scholar 

  10. Stromblad S, Cheresh DA (1996) Integrins, angiogenesis and vascular cell survival. Chem Biol 3:881–885

    Article  PubMed  CAS  Google Scholar 

  11. Aumailley M, Gurrath M, Muller G et al (1991) Arg-Gly-Asp constrained within cyclic pentapeptides. Strong and selective inhibitors of cell adhesion to vitronectin and laminin fragment P1. FEBS Lett 291:50–54

    Article  PubMed  CAS  Google Scholar 

  12. Boturyn D, Coll JL, Garanger E et al (2004) Template assembled cyclopeptides as multimeric system for integrin targeting and endocytosis. J Am Chem Soc 126:5730–5739

    Article  PubMed  CAS  Google Scholar 

  13. Jin ZH, Furukawa T, Galibert M et al (2011) Noninvasive visualization and quantification of tumor alphaVbeta3 integrin expression using a novel positron emission tomography probe, 64Cu-cyclam-RAFT-c(-RGDfK-)4. Nucl Med Biol 38:529–540

    Article  PubMed  CAS  Google Scholar 

  14. Koenig A, Herve L, Da Silva A et al (2007) Whole body small animal examination with a diffuse optical tomography instrument. Nucl Inst Methods Phys Res A 571:56–59

    Article  CAS  Google Scholar 

  15. Koenig A, Herve L, Gonon G et al (2010) Fluorescence diffuse optical tomography for free-space and multifluorophore studies. J Biomed Opt 15:016016

    Article  PubMed  Google Scholar 

  16. Koenig A, Herve L, Josserand V et al (2008) In vivo mice lung tumor follow-up with fluorescence diffuse optical tomography. J Biomed Opt 13:011008

    Article  PubMed  Google Scholar 

  17. David L, Mallet C, Keramidas M et al (2008) Bone morphogenetic protein-9 is a circulating vascular quiescence factor. Circ Res 102:914–922

    Article  PubMed  CAS  Google Scholar 

  18. Herve L, Koenig A, Da Silva A et al (2007) Noncontact fluorescence diffuse optical tomography off heterogeneous media. Appl Opt 46:4896–4906

    Article  PubMed  CAS  Google Scholar 

  19. Sancey L, Garanger E, Foillard S et al (2009) Clustering and internalization of integrin alphavbeta3 with a tetrameric RGD-synthetic peptide. Mol Ther 17:837–843

    Article  PubMed  CAS  Google Scholar 

  20. Napoli C, Giordano A, Casamassimi A et al (2011) Directed in vivo angiogenesis assay and the study of systemic neoangiogenesis in cancer. Int J Cancer 128:1505–1508

    Article  PubMed  CAS  Google Scholar 

  21. Guedez L, Rivera AM, Salloum R et al (2003) Quantitative assessment of angiogenic responses by the directed in vivo angiogenesis assay. Am J Pathol 162:1431–1439

    Article  PubMed  CAS  Google Scholar 

  22. McCarty MF, Baker CH, Bucana CD et al (2002) Quantitative and qualitative in vivo angiogenesis assay. Int J Oncol 21:5–10

    PubMed  CAS  Google Scholar 

  23. Robertson NE, Discafani CM, Downs EC et al (1991) A quantitative in vivo mouse model used to assay inhibitors of tumor-induced angiogenesis. Cancer Res 51:1339–1344

    PubMed  CAS  Google Scholar 

  24. Malinda KM (2009) In vivo matrigel migration and angiogenesis assay. Methods Mol Biol 467:287–294

    Article  PubMed  CAS  Google Scholar 

  25. Garofalakis A, Dubois A, Kuhnast B et al (2010) In vivo validation of free-space fluorescence tomography using nuclear imaging. Opt Lett 35:3024–3026

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by Cancéropole CLARA, the Institut National du Cancer (INCA) and the French National Research Agency (ANR).

Conflicts of interest

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jean-Luc Coll.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 595 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Keramidas, M., Josserand, V., Feige, JJ. et al. Noninvasive and Quantitative Assessment of In Vivo Angiogenesis Using RGD-Based Fluorescence Imaging of Subcutaneous Sponges. Mol Imaging Biol 15, 239–244 (2013). https://doi.org/10.1007/s11307-012-0595-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11307-012-0595-6

Key words

Navigation