Skip to main content

Advertisement

Log in

Preclinical Comparison of Near-Infrared-Labeled Cetuximab and Panitumumab for Optical Imaging of Head and Neck Squamous Cell Carcinoma

  • Research Article
  • Published:
Molecular Imaging and Biology Aims and scope Submit manuscript

Abstract

Purpose

Though various targets have been proposed and evaluated, no agent has yet been investigated in a clinical setting for head and neck cancer. The present study aimed to compare two fluorescently labeled anti-epidermal growth factor receptor (EGFR) antibodies for detection of head and neck squamous cell carcinoma (HNSCC).

Procedures

Antigen specificities and in vitro imaging of the fluorescently labeled anti-EGFR antibodies were performed. Next, immunodeficient mice (n = 22) bearing HNSCC (OSC-19 and SCC-1) tongue tumors received systemic injections of cetuximab-IRDye800CW, panitumumab-IRDye800CW, or IgG-IRDye800CW (a nonspecific control). Tumors were imaged and resected using two near-infrared imaging systems, SPY and Pearl. Fluorescent lymph nodes were also identified, and all resected tissues were sent for pathology.

Results

Panitumumab-IRDye800CW and cetuximab-IRDye800CW had specific and high affinity binding for EGFR (K D = 0.12 and 0.31 nM, respectively). Panitumumab-IRDye800CW demonstrated a 2-fold increase in fluorescence intensity compared to cetuximab-IRDye800CW in vitro. In vivo, both fluorescently labeled antibodies produced higher tumor-to-background ratios compared to IgG-IRDye800CW. However, there was no significant difference between the two in either cell line or imaging modality (OSC-19: p = 0.08 SPY, p = 0.48 Pearl; SCC-1: p = 0.77 SPY, p = 0.59 Pearl; paired t tests).

Conclusions

There was no significant difference between the two fluorescently labeled anti-EGFR monoclonal antibodies in murine models of HNSCC. Both cetuximab and panitumumab can be considered suitable targeting agents for fluorescent intraoperative detection of HNSCC.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Woolgar JA, Triantafyllou A (2005) A histopathological appraisal of surgical margins in oral and oropharyngeal cancer resection specimens. Oral Oncol 41:1034–1043

    Article  PubMed  Google Scholar 

  2. Ravasz LA, Slootweg PJ, Hordijk GJ, Smit F, van der Tweel I (1991) The status of the resection margin as a prognostic factor in the treatment of head and neck carcinoma. J Craniomaxillofac Surg 19:314–318

    Article  PubMed  CAS  Google Scholar 

  3. Gleysteen JP, Newman JR, Chhieng D, Frost A, Zinn KR, Rosenthal EL (2008) Fluorescent labeled anti-EGFR antibody for identification of regional and distant metastasis in a preclinical xenograft model. Head Neck 30:782–789

    Article  PubMed  Google Scholar 

  4. Kulbersh BD, Duncan RD, Magnuson JS, Skipper JB, Zinn K, Rosenthal EL (2007) Sensitivity and specificity of fluorescent immunoguided neoplasm detection in head and neck cancer xenografts. Arch Otolaryngol Head Neck Surg 133:511–515

    Article  PubMed  Google Scholar 

  5. Keereweer S, Mieog JS, Mol IM, et al. (2011) Detection of oral squamous cell carcinoma and cervical lymph node metastasis using activatable near-infrared fluorescence agents. Archives of otolaryngology--head & neck surgery 137:609–615.

    Google Scholar 

  6. Terwisscha van Scheltinga AG, van Dam GM, Nagengast WB et al (2011) Intraoperative near-infrared fluorescence tumor imaging with vascular endothelial growth factor and human epidermal growth factor receptor 2 targeting antibodies. J Nucl Med 52:1778–1785

    Article  PubMed  CAS  Google Scholar 

  7. van Dam GM, Themelis G, Crane LM et al (2011) Intraoperative tumor-specific fluorescence imaging in ovarian cancer by folate receptor-alpha targeting: first in-human results. Nat Med 17:1315–1319

    Article  PubMed  Google Scholar 

  8. Hilderbrand SA, Weissleder R (2010) Near-infrared fluorescence: application to in vivo molecular imaging. Curr Opin Chem Biol 14:71–79

    Article  PubMed  CAS  Google Scholar 

  9. Ogawa M, Kosaka N, Choyke PL, Kobayashi H (2009) In vivo molecular imaging of cancer with a quenching near-infrared fluorescent probe using conjugates of monoclonal antibodies and indocyanine green. Cancer Res 69:1268–1272

    Article  PubMed  CAS  Google Scholar 

  10. Pleijhuis RG, Langhout GC, Helfrich W et al (2011) Near-infrared fluorescence (NIRF) imaging in breast-conserving surgery: assessing intraoperative techniques in tissue-simulating breast phantoms. Eur J Surg Oncol 37:32–39

    Article  PubMed  CAS  Google Scholar 

  11. Themelis G, Harlaar NJ, Kelder W et al (2011) Enhancing surgical vision by using real-time imaging of alphavbeta3-integrin targeted near-infrared fluorescent agent. Ann Surg Oncol 18:3506–3513

    Article  PubMed  Google Scholar 

  12. Frangioni JV (2008) New technologies for human cancer imaging. J Clin Oncol 26:4012–4021

    Article  PubMed  Google Scholar 

  13. Sampath L, Kwon S, Ke S et al (2007) Dual-labeled trastuzumab-based imaging agent for the detection of human epidermal growth factor receptor 2 overexpression in breast cancer. J Nucl Med 48:1501–1510

    Article  PubMed  CAS  Google Scholar 

  14. Foersch S, Kiesslich R, Waldner MJ et al (2010) Molecular imaging of VEGF in gastrointestinal cancer in vivo using confocal laser endomicroscopy. Gut 59:1046–1055

    Article  PubMed  Google Scholar 

  15. Gao J, Chen K, Miao Z et al (2011) Affibody-based nanoprobes for HER2-expressing cell and tumor imaging. Biomaterials 32:2141–2148

    Article  PubMed  CAS  Google Scholar 

  16. Ogawa M, Regino CA, Seidel J et al (2009) Dual-modality molecular imaging using antibodies labeled with activatable fluorescence and a radionuclide for specific and quantitative targeted cancer detection. Bioconjug Chem 20:2177–2184

    Article  PubMed  CAS  Google Scholar 

  17. von Burstin J, Eser S, Seidler B et al (2008) Highly sensitive detection of early-stage pancreatic cancer by multimodal near-infrared molecular imaging in living mice. Int J Cancer 123:2138–2147

    Article  Google Scholar 

  18. Soltesz EG, Kim S, Laurence RG et al (2005) Intraoperative sentinel lymph node mapping of the lung using near-infrared fluorescent quantum dots. Ann Thorac Surg 79:269–277, discussion 269–277

    Article  PubMed  Google Scholar 

  19. Nimura H, Narimiya N, Mitsumori N, Yamazaki Y, Yanaga K, Urashima M (2004) Infrared ray electronic endoscopy combined with indocyanine green injection for detection of sentinel nodes of patients with gastric cancer. Br J Surg 91:575–579

    Article  PubMed  CAS  Google Scholar 

  20. Parungo CP, Ohnishi S, De Grand AM et al (2004) In vivo optical imaging of pleural space drainage to lymph nodes of prognostic significance. Ann Surg Oncol 11:1085–1092

    Article  PubMed  Google Scholar 

  21. Crane LM, Themelis G, Arts HJ et al (2011) Intraoperative near-infrared fluorescence imaging for sentinel lymph node detection in vulvar cancer: first clinical results. Gynecol Oncol 120:291–295

    Article  PubMed  CAS  Google Scholar 

  22. Crane LM, Themelis G, Pleijhuis RG et al (2011) Intraoperative multispectral fluorescence imaging for the detection of the sentinel lymph node in cervical cancer: a novel concept. Mol Imaging Biol 13:1043–1049

    Article  PubMed  Google Scholar 

  23. van de Ven S, Wiethoff A, Nielsen T et al (2010) A novel fluorescent imaging agent for diffuse optical tomography of the breast: first clinical experience in patients. Mol Imaging Biol 12:343–348

    Article  PubMed  Google Scholar 

  24. Pomerantz RG, Grandis JR (2003) The role of epidermal growth factor receptor in head and neck squamous cell carcinoma. Curr Oncol Rep 5:140–146

    Article  PubMed  Google Scholar 

  25. Bonner JA, Harari PM, Giralt J et al (2006) Radiotherapy plus cetuximab for squamous-cell carcinoma of the head and neck. N Engl J Med 354:567–578

    Article  PubMed  CAS  Google Scholar 

  26. Lofgren JA, Dhandapani S, Pennucci JJ et al (2007) Comparing ELISA and surface plasmon resonance for assessing clinical immunogenicity of panitumumab. J Immunol 178:7467–7472

    PubMed  CAS  Google Scholar 

  27. Yang XD, Jia XC, Corvalan JR, Wang P, Davis CG (2001) Development of ABX-EGF, a fully human anti-EGF receptor monoclonal antibody, for cancer therapy. Crit Rev Oncol Hematol 38:17–23

    Article  PubMed  CAS  Google Scholar 

  28. Yan L, Hsu K, Beckman RA (2008) Antibody-based therapy for solid tumors. Cancer J 14:178–183

    Article  PubMed  CAS  Google Scholar 

  29. Ray GL, Baidoo KE, Wong KJ et al (2009) Preclinical evaluation of a monoclonal antibody targeting the epidermal growth factor receptor as a radioimmunodiagnostic and radioimmunotherapeutic agent. Br J Pharmacol 157:1541–1548

    Article  PubMed  CAS  Google Scholar 

  30. Nayak TK, Garmestani K, Milenic DE, Baidoo KE, Brechbiel MW (2011) HER1-targeted 86Y-panitumumab possesses superior targeting characteristics than 86Y-cetuximab for PET imaging of human malignant mesothelioma tumors xenografts. PLoS One 6:e18198

    Article  PubMed  CAS  Google Scholar 

  31. Rosenthal EL, Kulbersh BD, Duncan RD et al (2006) In vivo detection of head and neck cancer orthotopic xenografts by immunofluorescence. Laryngoscope 116:1636–1641

    Article  PubMed  Google Scholar 

  32. Rosenthal EL, Kulbersh BD, King T, Chaudhuri TR, Zinn KR (2007) Use of fluorescent labeled anti-epidermal growth factor receptor antibody to image head and neck squamous cell carcinoma xenografts. Mol Cancer Ther 6:1230–1238

    Article  PubMed  CAS  Google Scholar 

  33. Leung K (2004) BODIPY-FL-neutravidin-biotin-Cetuximab. In Molecular Imaging and Contrast Agent Database (MICAD). National Center for Biotechnology Information, Bethesda.

  34. Biosciences L-C (2007) IRDye(R) 800CW Protein Labeling Kit–High MW. Lincoln, LI-COR Biosciences, pp 1–9

    Google Scholar 

  35. Reuthebuch O, Haussler A, Genoni M et al (2004) Novadaq SPY: intraoperative quality assessment in off-pump coronary artery bypass grafting. Chest 125:418–424

    Article  PubMed  Google Scholar 

  36. Schneider CA, Rasband WS, Eliceiri KW (2012) NIH Image to ImageJ: 25 years of image analysis. Nat Methods 9:671–675

    Article  PubMed  CAS  Google Scholar 

  37. Chung KY, Shia J, Kemeny NE et al (2005) Cetuximab shows activity in colorectal cancer patients with tumors that do not express the epidermal growth factor receptor by immunohistochemistry. J Clin Oncol 23:1803–1810

    Article  PubMed  CAS  Google Scholar 

  38. Milano G, Etienne-Grimaldi MC, Dahan L et al (2008) Epidermal growth factor receptor (EGFR) status and K-Ras mutations in colorectal cancer. Ann Oncol 19:2033–2038

    Article  PubMed  CAS  Google Scholar 

  39. Heath CH, Deep NL, Sweeny L, Zinn KR, Rosenthal EL (2012) Use of Panitumumab-IRDye800 to image microscopic head and neck cancer in an orthotopic surgical model. Ann Surg Oncol 19:3879–3887

    Article  PubMed  Google Scholar 

  40. Leemans CR, Braakhuis BJ, Brakenhoff RH (2011) The molecular biology of head and neck cancer. Nat Rev Cancer 11:9–22

    Article  PubMed  CAS  Google Scholar 

  41. Perez-Ordonez B, Beauchemin M, Jordan RC (2006) Molecular biology of squamous cell carcinoma of the head and neck. J Clin Pathol 59:445–453

    Article  PubMed  CAS  Google Scholar 

  42. Kim ES, Khuri FR, Herbst RS (2001) Epidermal growth factor receptor biology (IMC-C225). Curr Opin Oncol 13:506–513

    Article  PubMed  CAS  Google Scholar 

  43. Helman EE, Newman JR, Dean NR, Zhang W, Zinn KR, Rosenthal EL (2010) Optical imaging predicts tumor response to anti-EGFR therapy. Cancer Biol Ther 10:166–171

    Article  PubMed  CAS  Google Scholar 

  44. Sharafinski ME, Ferris RL, Ferrone S, Grandis JR (2010) Epidermal growth factor receptor targeted therapy of squamous cell carcinoma of the head and neck. Head Neck 32:1412–1421

    Article  PubMed  Google Scholar 

  45. Gleysteen JP, Duncan RD, Magnuson JS, Skipper JB, Zinn K, Rosenthal EL (2007) Fluorescently labeled cetuximab to evaluate head and neck cancer response to treatment. Cancer Biol Ther 6:1181–1185

    PubMed  CAS  Google Scholar 

  46. Keereweer S, Mol IM, Kerrebijn JD et al (2012) Targeting integrins and enhanced permeability and retention (EPR) effect for optical imaging of oral cancer. J Surg Oncol 105:714–718

    Article  PubMed  CAS  Google Scholar 

  47. Day KE, Beck LN, Deep NL, Kovar J, Zinn KR, Rosenthal EL (2013) Fluorescently labeled therapeutic antibodies for detection of microscopic melanoma. Laryngoscope doi:. doi:10.1002/lary.24102

    Google Scholar 

  48. Lipsky MS, Sharp LK (2001) From idea to market: the drug approval process. J Am Board Fam Pract 14:362–367

    PubMed  CAS  Google Scholar 

  49. Newman JR, Gleysteen JP, Baranano CF et al (2008) Stereomicroscopic fluorescence imaging of head and neck cancer xenografts targeting CD147. Cancer Biol Ther 7:1063–1070

    Article  PubMed  CAS  Google Scholar 

  50. Withrow KP, Newman JR, Skipper JB et al (2008) Assessment of bevacizumab conjugated to Cy5.5 for detection of head and neck cancer xenografts. Technol Cancer Res Treat 7:61–66

    PubMed  CAS  Google Scholar 

  51. Keereweer S, Kerrebijn JD, Mol IM et al (2012) Optical imaging of oral squamous cell carcinoma and cervical lymph node metastasis. Head Neck 34:1002–1008

    Article  PubMed  Google Scholar 

  52. Shan L, Hao Y, Wang S et al (2008) Visualizing head and neck tumors in vivo using near-infrared fluorescent transferrin conjugate. Mol Imaging 7:42–49

    PubMed  CAS  Google Scholar 

  53. Hadjipanayis CG, Jiang H, Roberts DW, Yang L (2011) Current and future clinical applications for optical imaging of cancer: from intraoperative surgical guidance to cancer screening. Semin Oncol 38:109–118

    Article  PubMed  Google Scholar 

  54. Calabi F, Neuberger MS (1987) Molecular genetics of immunoglobulin. Elsevier, Amsterdam

    Google Scholar 

  55. Alvarenga ML, Kikhney J, Hannewald J et al (2012) In-depth biophysical analysis of interactions between therapeutic antibodies and the extracellular domain of the epidermal growth factor receptor. Anal Biochem 421:138–151

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Yolanda Hartman for running the rEGFR assay and Dr. Andra Frost for assistance in pathologic examination of tissue samples.

Conflict of interest

The authors have no financial disclosures or conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eben L. Rosenthal.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Day, K.E., Sweeny, L., Kulbersh, B. et al. Preclinical Comparison of Near-Infrared-Labeled Cetuximab and Panitumumab for Optical Imaging of Head and Neck Squamous Cell Carcinoma. Mol Imaging Biol 15, 722–729 (2013). https://doi.org/10.1007/s11307-013-0652-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11307-013-0652-9

Key words

Navigation