Skip to main content

Advertisement

Log in

Predicting Response to Therapy for Autoimmune and Inflammatory Diseases Using a Folate Receptor-Targeted Near-Infrared Fluorescent Imaging Agent

  • Research Article
  • Published:
Molecular Imaging and Biology Aims and scope Submit manuscript

Abstract

Purpose

Although current therapies for many inflammatory/autoimmune diseases are effective, a significant number of patients still exhibit only partial or negligible responses to therapeutic intervention. Since prolonged use of an inadequate therapy can result in both progressive tissue damage and unnecessary expense, methods to identify nonresponding patients are necessary.

Procedures

Four murine models of inflammatory disease (rheumatoid arthritis, ulcerative colitis, pulmonary fibrosis, and atherosclerosis) were induced, treated with anti-inflammatory agents, and evaluated for inflammatory response. The mice were also injected intraperitoneally with OTL0038, a folate receptor-targeted near-infrared dye that accumulates in activated macrophages at sites of inflammation. Uptake of OTL0038 in inflamed lesions was then correlated with clinical measurements of disease severity.

Results

OTL0038 accumulated at sites of inflammation in all four animal models. More importantly, changes in lesion-associated OTL0038 preceded changes in clinical symptoms in mice treated with all anti-inflammatory drugs examined.

Conclusion

OTL0038 has the ability to predict responses to multiple therapies in four murine models of inflammation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Bennett AN, Peterson P, Zain A et al (2005) Adalimumab in clinical practice: outcome in 70 rheumatoid arthritis patients, including comparison of patients with and without previous anti-TNF exposure. Rheumatology 44:1026–1031

    Article  CAS  PubMed  Google Scholar 

  2. Bazzani C, Filippini M, Caporali R et al (2009) Anti-TNF α therapy in a cohort of rheumatoid arthritis patients: clinical outcomes. Autoimmun Rev 8:260–265

    Article  CAS  PubMed  Google Scholar 

  3. Rau R (2005) Have traditional DMARDs had their day? Effectiveness of parenteral gold compared to biologic agents. Clin Rheumatol 24:189–202

    Article  PubMed  Google Scholar 

  4. Yazici Y (2007) Monitoring response to treatment in rheumatoid arthritis. Which tool is best suited for routine “real world” care? Bull NYU Hosp Jt Dis 65(Suppl 1):S25–S28

    PubMed  Google Scholar 

  5. Ory PA (2003) Interpreting radiographic data in rheumatoid arthritis. Ann Rheum Dis 62:597–604

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Taylor PC (2003) The value of sensitive imaging modalities in rheumatoid arthritis. Arthritis Res Ther 5:210–213

    Article  PubMed  PubMed Central  Google Scholar 

  7. (1996) American College of Rheumatology Ad Hoc Committee on Clinical Guidelines. Guidelines for the management of rheumatoid arthritis. Arthritis Rheum 37:713–722

  8. Breedveld FC (2003) Should rheumatoid arthritis be treated conservatively or aggressively? Rheumatology 42:ii41–ii43

    Article  PubMed  Google Scholar 

  9. Lard LR, Visser H, Speyer I et al (2001) Early versus delayed treatment in patients with recent-onset rheumatoid arthritis: comparison of two cohorts who received different treatment strategies. Am J Med 111:446–451

    Article  CAS  PubMed  Google Scholar 

  10. Tsakonas E, Fitzgerald AA, Fitzcharle MA (2000) Consequences of delayed therapy with second line agents in rheumatoid arthritis: a 3 year followup on the hydroxychloroquine in early rheumatoid arthritis (HERA) study. J Rheumatol 27:623–629

    CAS  PubMed  Google Scholar 

  11. Escobedo JO, Rusin O, Lim S (2010) Strongin RM (2010) NIR dyes for bioimaging applications. Curr Opin Chem Biol 14:64

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Kitai T, Inomoto T, Miwa M, Shikayama T (2005) Fluorescence navigation with indocyanine green for detecting sentinel lymph nodes in breast cancer. Breast Cancer 12:211–215

    Article  PubMed  Google Scholar 

  13. Werner SG, Langer HE, Schott P et al (2013) Backhaus M: indocyanine green-enhanced fluorescence optical imaging in patients with early and very early arthritis: a comparative study with magnetic resonance imaging. Arthritis Rheum 2013(65):3036–3044

    Article  Google Scholar 

  14. Werner SG, Langer HE, Ohrndorf S et al (2012) Inflammation assessment in patients with arthritis using a novel in vivo fluorescence optical imaging technology. Ann Rheum Dis 71:504–510

    Article  PubMed  PubMed Central  Google Scholar 

  15. Okochi O, Kaneko T, Sugimoto H et al (2002) ICG pulse spectrophotometry for perioperative liver function in hepatectomy. J Surg Res 103:109–113

    Article  PubMed  Google Scholar 

  16. Tanaka E, Chen FY, Flaumenhaft R et al (2009) Real-time assessment of cardiac perfusion, coronary angiography, and acute intravascular thrombi using dual-channel near-infrared fluorescence imaging. J Thorac Cardiovasc Surg 138:133–140

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Chang AA, Morse LS, Handa JT et al (1998) Histologic localization of indocyanine green dye in aging primate and human ocular tissues with clinical angiographic correlation. Ophthalmology 105:1060–1068

    Article  CAS  PubMed  Google Scholar 

  18. Nakashima-Matsushita N, Homma T, Yu S (1999) Selective expression of folate receptor beta and its possible role in methotrexate transport in synovial macrophages from patients with rheumatoid arthritis. Arthritis Rheum 42:1609–1616

    Article  CAS  PubMed  Google Scholar 

  19. Xia W, Hilgenbrink AR, Matteson EL et al (2009) A functional folate receptor is induced during macrophage activation and can be used to target drugs to activated macrophages. Blood 113:438–446

    Article  CAS  PubMed  Google Scholar 

  20. Paulos CM, Varghese B, Widmer WR et al (2006) Folate-targeted immunotherapy effectively treats established adjuvant and collagen-induced arthritis. Arthritis Res Ther 8:R77

    Article  PubMed  PubMed Central  Google Scholar 

  21. Vaitilingam B, Chelvam V, Kularatne SA et al (2012) A folate receptor-α-specific ligand that targets cancer tissue and not sites of inflammation. J Nucl Med 53:1127–1134

    Article  CAS  PubMed  Google Scholar 

  22. Turk MJ, Breur GJ, Widmer WR et al (2002) Folate-targeted imaging of activated macrophages in rats with adjuvant-induced arthritis. Arthritis Rheum 46:1947–1955

    Article  PubMed  Google Scholar 

  23. Matteson EL, Lowe VJ, Prendergast FG (2009) Assessment of disease activity in rheumatoid arthritis using a novel folate targeted radiopharmaceutical Folatescan. Clin Exp Rheumatol 27:253–259

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Jager NA, Westra J, van Dam GM (2012) Targeted folate receptor β fluorescence imaging as a measure of inflammation to estimate vulnerability within human atherosclerotic carotid plaque. J Nucl Med 2012(53):1222–1229

    Article  Google Scholar 

  25. Hansen MJ, Low PS (2011) Folate receptor positive macrophages: cellular targets for imaging and therapy of inflammatory and autoimmune diseases. In: Jackman AL, Leamon CP (eds) Targeted drug strategies for cancer and inflammation. Springer, New York, pp 181–193

    Chapter  Google Scholar 

  26. Mahalingam SM, Kularatne SA, Roy J, Low PS (2013) Evaluation of pteroyl-amino acid-NIR dye conjugates for tumor targeted fluorescence guided surgery. [abstract]. Papers of the American Chemical Society 246 MEDI 329

  27. Gagare PD, Noshi M, Myers C, Kularatne SA, Low PS: OTL-0038 (2013) A potent folate receptor (FR)-targeted NIR dye. [abstract]. Papers of the American Chemical Society 246 MEDI 328

  28. Brand DD, Latham KA, Rosloniec EF (2007) Collagen-induced arthritis. Nat Protoc 2:1269–1275

    Article  CAS  PubMed  Google Scholar 

  29. Inglis JJ, Criado G, Medghalchi M (2007) Collagen-induced arthritis in C57BL/6 mice is associated with a robust and sustained T-cell response to type II collagen. Arthritis Res Ther 9:R113

    Article  PubMed  PubMed Central  Google Scholar 

  30. Webb LM, Walmsley MJ, Feldmann M (1996) Prevention and amelioration of collagen-induced arthritis by blockade of the CD28 co-stimulatory pathway: requirement for both B7-1 and B7-2. Eur J Immunol 26:2320–2328

    Article  CAS  PubMed  Google Scholar 

  31. Wirtz S, Neufert C, Weigmann B, Neurath MF (2007) Chemically induced mouse models of intestinal inflammation. Nat Protoc 2:541–546

    Article  CAS  PubMed  Google Scholar 

  32. Smith JA (1983) The effect of atropine, cimetidine and FPL 52694 on duodenal ulcers in mice. Eur J Pharmacol 88:215–221

    Article  CAS  PubMed  Google Scholar 

  33. Axelsson LG, Landstrom E, Bylund-Fellenius AC (1998) Experimental colitis induced by dextran sulphate sodium in mice: beneficial effects of sulphasalazine and olsalazine. Aliment Pharmacol Ther 12:925–934

    Article  CAS  PubMed  Google Scholar 

  34. Zadelaar S, Kleemann R, Verschuren L et al (2007) Mouse models for atherosclerosis and pharmaceutical modifiers. Arterioscler Thromb Vasc Biol 27:1706–1721

    Article  CAS  PubMed  Google Scholar 

  35. Iwashita M, Nakatsu Y, Sakoda H et al (2013) Valsartan restores inflammatory response by macrophages in adipose and hepatic tissues of LPS-infused mice. Adipocyte 2:28–32

    Article  PubMed  PubMed Central  Google Scholar 

  36. Li Z, Iwai M, Wu L et al (2004) Fluvastatin enhances the inhibitory effects of a selective AT1 receptor blocker, valsartan, on atherosclerosis. Hypertension 44:758–763

    Article  CAS  PubMed  Google Scholar 

  37. Moore BB, Hogaboam CM (2008) Murine models of pulmonary fibrosis. Am J Physiol Lung Cell Mol Physiol 294:L152–160

    Article  CAS  PubMed  Google Scholar 

  38. Moeller A, Ask K, Warburton D et al (2008) The bleomycin animal model; a useful tool to investigate treatment options for idiopathic pulmonary fibrosis? Int J Biochem Cell Biol 40:362–382

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Kinne RW, Bräuer R, Stuhlmüller B et al (2000) Macrophages in rheumatoid arthritis. Arthritis Res 2:189–202

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Hunter MM, Wang A, Parhar KS et al (2010) In vitro-derived alternatively activated macrophages reduce colonic inflammation in mice. Gastroenterology 138:1395–1405

    Article  CAS  PubMed  Google Scholar 

  41. Pechkovsky DV, Prasse A, Kollert F et al (2010) Alternatively activated alveolar macrophages in pulmonary fibrosis-mediator production and intracellular signal transduction. Clin Immunol 137:89–101

    Article  CAS  PubMed  Google Scholar 

  42. Chen WT, Mahmood U, Weissleder R, Tung CH (2005) Arthritis imaging using a near-infrared fluorescence folate-targeted probe. Arthritis Res Ther 7:R310–R317

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This work was supported by a research grant from On Target Laboratories, LLC.

Conflict of Interest

PSL is a board member, significant shareholder, and Chief Science Officer of On Target Laboratories LLC, which was incorporated in 2010. All other authors declare no competing interests.

Authors’ contributions

LEK designed the study, performed the experiments, analyzed the data, and wrote the manuscript. SM synthesized the OTL0038. PSL conceived and supervised the study as well as reviewed the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Philip S. Low.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 2716 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kelderhouse, L.E., Mahalingam, S. & Low, P.S. Predicting Response to Therapy for Autoimmune and Inflammatory Diseases Using a Folate Receptor-Targeted Near-Infrared Fluorescent Imaging Agent. Mol Imaging Biol 18, 201–208 (2016). https://doi.org/10.1007/s11307-015-0876-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11307-015-0876-y

Key words

Navigation