Skip to main content

Advertisement

Log in

Generation and Application of Male Mice with Specific Expression of Green Fluorescent Protein in Germ Cells

  • Research Article
  • Published:
Molecular Imaging and Biology Aims and scope Submit manuscript

Abstract

Purpose

The study aimed to generate a mouse line with green fluorescent protein (GFP) specifically expressed in male germ cells to assess testicular toxicity.

Procedures

The mouse line with GFP specifically expressed in male germ cells was generated by mating a germ cell-specific transgenic Cre male mouse with a double-fluorescent reporter female mouse using Cre/loxP. The mouse line was administered ethylene glycol monomethyl ether (EGME) by oral gavage. Then, the green fluorescence intensity in the testes was used as an indicator to examine the potential for testicular toxicity testing by molecular biology, histopathology, and in vivo imaging techniques.

Results

Specific testicular GFP expression was observed in mice. GFP was mainly expressed in the germ cell lineage and concentrated in secondary spermatocytes/spermatocytes and spermatozoa. After administration of EGME, at the organ level, the green fluorescent intensity of the testes was decreased by 11 days and had disappeared by 34 days. Frozen testicular sections stained with DAPI showed significantly decreased green fluorescence in secondary spermatocytes and sperm cells. These observations were consistent with the testis weight and results of testicular histopathology.

Conclusions

With the application of in vivo imaging becoming popular, this mouse line with GFP specifically expressed in the male germ cells may have some advantages for the study of reproductive toxicity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Sternberg N, Hamilton D (1981) Bacteriophage-P1 site-specific recombination. 1. Recombination between Loxp sites. J Mol Biol 150:467–486

    Article  CAS  PubMed  Google Scholar 

  2. Nagy A (2000) Cre recombinase: the universal reagent for genome tailoring. Genesis 26:99–109

    Article  CAS  PubMed  Google Scholar 

  3. Antonson P, Humire P, Gustafsson JA (2016) Estrogen receptor-alpha knockout mice. Methods Mol Biol 1366:425–30

    Article  PubMed  Google Scholar 

  4. Zhang W, Freichel M, van der Hoeven F et al (2016) Novel endothelial cell-specific AQP1 knockout mice confirm the crucial role of endothelial AQP1 in ultrafiltration during peritoneal dialysis. PLoS One 11, e0145513

    Article  PubMed  Google Scholar 

  5. Roussell DL, Bennett KL (1993) Glh-1, a germ-line putative RNA helicase from Caenorhabditis, has 4 zinc fingers. P NATL ACAD SCI USA 90:9300–9304

    Article  CAS  Google Scholar 

  6. Olsen LC, Aasland R, Fjose A (1997) A vasa-like gene in zebrafish identifies putative primordial germ cells. Mech Dev 66:95–105

    Article  CAS  PubMed  Google Scholar 

  7. Castrillon DH, Quade BJ, Wang TY et al (2000) The human VASA gene is specifically expressed in the germ cell lineage. Proc Natl Acad Sci USA 97:9585–9590

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Fujiwara Y, Komiya T, Kawabata H et al (1994) Isolation of a dead-family protein gene that encodes a murine homolog of Drosophila-Vasa and its specific expression in germ-cell lineage. Proc Natl Acad Sci USA 91:12258–12262

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Sano H, Nakamura A, Kobayashi S (2002) Identification of a transcriptional regulatory region for germline-specific expression of vasa gene in Drosophila melanogaster. Mech Dev 112:129–39

    Article  CAS  Google Scholar 

  10. Yoshizaki G, Takeuchi Y, Sakatani S et al (2000) Germ cell-specific expression of green fluorescent protein in transgenic rainbow trout under control of the rainbow trout vasa-like gene promoter. Int J Dev Biol 44:323–6

    CAS  PubMed  Google Scholar 

  11. Krovel AV, Olsen LC (2002) Expression of a vas::EGFP transgene in primordial germ cells of the zebrafish. Mech Develop 116:141–150

    Article  CAS  Google Scholar 

  12. Gallardo T, Shirley L, John GB et al (2007) Generation of a germ cell-specific mouse transgenic Cre line, Vasa-Cre. Genesis 45:413–7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Muzumdar MD, Tasic B, Miyamichi K et al (2007) A global double-fluorescent Cre reporter mouse. Genesis 45:593–605

    Article  CAS  PubMed  Google Scholar 

  14. Foster PM, Creasy DM, Foster JR et al (1984) Testicular toxicity produced by ethylene glycol monomethyl and monoethyl ethers in the rat. Environ Health Perspect 57:207–17

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Bagchi G, Waxman DJ (2008) Toxicity of ethylene glycol monomethyl ether: impact on testicular gene expression. Int J Androl 31:269–74

    Article  CAS  PubMed  Google Scholar 

  16. Toppari J, Larsen JC, Christiansen P et al (1996) Male reproductive health and environmental xenoestrogens. Environ Health Perspect 104(Suppl 4):741–803

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Levi M, Tzabari M, Savion N et al (2015) Dexrazoxane exacerbates doxorubicin-induced testicular toxicity. Reproduction 150:357–366

    Article  CAS  PubMed  Google Scholar 

  18. Martino-Andrade AJ, Chahoud I (2010) Reproductive toxicity of phthalate esters. Mol Nutr Food Res 54:148–57

    Article  CAS  PubMed  Google Scholar 

  19. Shimomura O, Johnson FH, Saiga Y (1962) Extraction, purification and properties of aequorin, a bioluminescent protein from the luminous hydromedusan, Aequorea. J Cell Comp Physiol 59:223–39

    Article  CAS  Google Scholar 

  20. Betzig E, Patterson GH, Sougrat R et al (2006) Imaging intracellular fluorescent proteins at nanometer resolution. Science 313:1642–1645

    Article  CAS  Google Scholar 

  21. Yang M, Baranov E, Jiang P et al (2000) Whole-body optical imaging of green fluorescent protein-expressing tumors and metastases. Proc Natl Acad Sci U S A 97:1206–11

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Shcherbo D, Merzlyak EM, Chepurnykh TV et al (2007) Bright far-red fluorescent protein for whole-body imaging. Nat Methods 4:741–6

    Article  CAS  PubMed  Google Scholar 

  23. Yang M, Luiken G, Baranov E et al (2005) Facile whole-body imaging of internal fluorescent tumors in mice with an LED flashlight. Biotechniques 39:170-+

    Article  CAS  PubMed  Google Scholar 

  24. Hoffman RM, Yang M (2006) Whole-body imaging with fluorescent proteins. Nat Protoc 1:1429–1438

    Article  CAS  PubMed  Google Scholar 

  25. Hoffman RM (2015) Application of GFP imaging in cancer. Lab Invest 95:432–452

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Hoffman RM (2005) The multiple uses of fluorescent proteins to visualize cancer in vivo. Nat Rev Cancer 5:796–806

    Article  CAS  PubMed  Google Scholar 

  27. Hoffman RM, Yang M (2006) Color-coded fluorescence imaging of tumor-host interactions. Nat Protoc 1:928–935

    Article  CAS  PubMed  Google Scholar 

  28. Hoffman RM, Yang M (2006) Subcellular imaging in the live mouse. Nat Protoc 1:775–782

    Article  CAS  PubMed  Google Scholar 

  29. Yang M, Reynoso J, Jiang P et al (2004) Transgenic nude mouse with ubiquitous green fluorescent protein expression as a host for human tumors. Cancer Res 64:8651–8656

    Article  CAS  Google Scholar 

  30. Chapin RE, Lamb JC (1984) Effects of ethylene-glycol monomethyl ether on various parameters of testicular function in the F344 rat. Environ Health Perspect 57:219–224

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Chapin RE, Dutton SL, Ross MD et al (1984) The effects of ethylene glycol monomethyl ether on testicular histology in F344 rats. J Androl 5:369–80

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We acknowledge the staff who operated the reflecting fluorescence imaging system at the College of Engineering of Peking University for their excellent technical assistance in small animal imaging. This work was supported by the Chinese National Science Equipment Development Program (No. 2011YQ030114).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xiaomei Liu or Desheng Zhu.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Z., Li, J., Cao, D. et al. Generation and Application of Male Mice with Specific Expression of Green Fluorescent Protein in Germ Cells. Mol Imaging Biol 18, 659–666 (2016). https://doi.org/10.1007/s11307-016-0947-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11307-016-0947-8

Key words

Navigation