Skip to main content
Log in

New insights on the role of the insular cortex and habenula in OSA

  • Review
  • Published:
Sleep and Breathing Aims and scope Submit manuscript

Abstract

Purpose

Abnormal structure or function in the central nervous system (CNS) can also affect obstructive sleep apnea (OSA). Because human afferent and motor pathways that regulate apnea are still poorly understood, it is not possible to modify the behavior of motor neurons to control airway function. The purpose of this article is to clear the central control mechanism of genioglossus (GG) and to discuss how altered activity in the limbic system and its related structures might affect OSA development, in order to provide help for the treatment of this disease.

Methods

Functional magnetic resonance imaging (fMRI) data from previous studies on OSA-related brain damage in human beings plus the data from clinical and animal experiments are summarized. These articles are overviewed to discuss the roles of the limbic system—the insular cortex (Ic), the habenula (Hb), and CNS—in the pathogenesis and mechanisms of OSA.

Results

The Ic, which relays signals through the Hb, may play a role in OSA because activating the Ic causes the Hb to suppress activity of the raphe nucleus (RN), resulting in lower levels of 5-hydroxytryptamine (5-HT) that decreases the muscle tone of the GG. This leads to airway collapse.

Conclusions

The Ic may be an important region in the development of OSA. Altered activity in the limbic system and its related structures could also be associated with OSA.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Li J, Li MX, Liu SN, Wang JH, Huang M, Wang M, Wang S (2014) Is brain damage really involved in the pathogenesis of obstructive sleep apnea? Neuroreport 25(8):593–595. doi:10.1097/WNR.0000000000000143

    PubMed  Google Scholar 

  2. Nieuwenhuys R (2012) The insular cortex: a review. Prog Brain Res 195:123–163. doi:10.1016/B978-0-444-53860-4.00007-6

    Article  PubMed  Google Scholar 

  3. von Leupoldt A, Dahme B (2005) Cortical substrates for the perception of dyspnea. Chest 128(1):345–354. doi:10.1378/chest.128.1.345

    Article  Google Scholar 

  4. Yadav SK, Kumar R, Macey PM, Woo MA, Yan-Go FL, Harper RM (2014) Insular cortex metabolite changes in obstructive sleep apnea. Sleep 37(5):951–958. doi:10.5665/sleep.3668

    PubMed Central  PubMed  Google Scholar 

  5. Bagaev V, Aleksandrov V (2006) Visceral-related area in the rat insular cortex. Auton Neurosci: Basic Clin 125(1–2):16–21. doi:10.1016/j.autneu.2006.01.006

    Article  CAS  Google Scholar 

  6. Alexandrov VG, Ivanova TG, Alexandrova NP (2007) Prefrontal control of respiration. J Physiol Pharmacol: Off J Pol Physiol Soc 58(Suppl 5 (Pt 1)):17–23

    Google Scholar 

  7. Scheitz JF, Endres M, Mochmann HC, Audebert HJ, Nolte CH (2012) Frequency, determinants and outcome of elevated troponin in acute ischemic stroke patients. Int J Cardiol 157(2):239–242. doi:10.1016/j.ijcard.2012.01.055

    Article  PubMed  Google Scholar 

  8. Benarroch EE (1993) The central autonomic network: functional organization, dysfunction, and perspective. Mayo Clin Proc 68(10):988–1001

    Article  CAS  PubMed  Google Scholar 

  9. Nagai M, Hoshide S, Kario K (2010) The insular cortex and cardiovascular system: a new insight into the brain-heart axis. J Am Soc Hypertens: JASH 4(4):174–182. doi:10.1016/j.jash.2010.05.001

    Article  PubMed  Google Scholar 

  10. Aihara K, Oga T, Yoshimura C, Hitomi T, Chihara Y, Harada Y, Murase K, Toyama Y, Tanizawa K, Handa T, Tsuboi T, Mishima M, Chin K (2013) Measurement of dyspnea in patients with obstructive sleep apnea. Sleep Breathing Schlaf Atmung 17(2):753–761. doi:10.1007/s11325-012-0759-2

    Article  PubMed  Google Scholar 

  11. Henderson LA, Woo MA, Macey PM, Macey KE, Frysinger RC, Alger JR, Yan-Go F, Harper RM (2003) Neural responses during Valsalva maneuvers in obstructive sleep apnea syndrome. J Appl Physiol 94(3):1063–1074. doi:10.1152/japplphysiol.00702.2002

    Article  PubMed  Google Scholar 

  12. Herigstad M, Hayen A, Wiech K, Pattinson KT (2011) Dyspnoea and the brain. Respir Med 105(6):809–817. doi:10.1016/j.rmed.2010.12.022

    Article  PubMed  Google Scholar 

  13. Oppenheimer SM, Gelb A, Girvin JP, Hachinski VC (1992) Cardiovascular effects of human insular cortex stimulation. Neurology 42(9):1727–1732

    Article  CAS  PubMed  Google Scholar 

  14. Real C, Seif I, Adrien J, Escourrou P (2009) Ondansetron and fluoxetine reduce sleep apnea in mice lacking monoamine oxidase A. Respir Physiol Neurobiol 168(3):230–238. doi:10.1016/j.resp.2009.07.003

    Article  CAS  PubMed  Google Scholar 

  15. Cui L, Wang JH, Wang M, Huang M, Wang CY, Xia H, Xu JG, Li MX, Wang S (2012) Injection of L-glutamate into the insular cortex produces sleep apnea and serotonin reduction in rats. Sleep Breathing Schlaf Atmung 16(3):845–853. doi:10.1007/s11325-011-0586-x

    Article  PubMed  Google Scholar 

  16. Li M, Wang J, Huang ML W, Wang MY L, Wang S (2010) Blockage of the habenular nucleus can eliminate dyspnea induced by electrostimulation of the insular cortex. Neural Regen Res 5(13):1025–1029

    Google Scholar 

  17. Schon D, Rosenkranz M, Regelsberger J, Dahme B, Buchel C, von Leupoldt A (2008) Reduced perception of dyspnea and pain after right insular cortex lesions. Am J Respir Crit Care Med 178(11):1173–1179. doi:10.1164/rccm.200805-731OC

    Article  PubMed  Google Scholar 

  18. Wang J, Wang M, Wei Z, Li M, Huang M, Wang S (2014) The lateral habenular nucleus mediates signal transduction from the insular cortex in OSA rats. Sleep Breathing Schlaf Atmung 18(3):491–497. doi:10.1007/s11325-013-0910-8

    Article  PubMed  Google Scholar 

  19. Banzett RB, Mulnier HE, Murphy K, Rosen SD, Wise RJ, Adams L (2000) Breathlessness in humans activates insular cortex. Neuroreport 11(10):2117–2120

    Article  CAS  PubMed  Google Scholar 

  20. Ptak K, Yamanishi T, Aungst J, Milescu LS, Zhang R, Richerson GB, Smith JC (2009) Raphe neurons stimulate respiratory circuit activity by multiple mechanisms via endogenously released serotonin and substance P. J Neurosci: Off J Soc Neurosci 29(12):3720–3737. doi:10.1523/JNEUROSCI. 5271-08.2009

    Article  CAS  Google Scholar 

  21. Rudnicka A, Plywaczewski R, Jonczak L, Gorecka D, Sliwinski P (2010) Prevalence of stroke in patients with obstructive sleep apnoea. Pneumonol Alergol Pol 78(2):121–125

    PubMed  Google Scholar 

  22. Davis KA, Cantor C, Maus D, Herman ST (2008) A neurological cause of recurrent choking during sleep. J Clin Sleep Med 4(6):586–587, 15

    PubMed Central  PubMed  Google Scholar 

  23. Nesbitt AD, Kosky CA, Leschziner GD (2013) Insular seizures causing sleep-related breathlessness. Lancet 382(9906):1756, 23

    Article  PubMed  Google Scholar 

  24. Bianco IH, Wilson SW (2009) The habenular nuclei: a conserved asymmetric relay station in the vertebrate brain. Philos Trans R Soc Lond Ser B Biol Sci 364(1519):1005–1020. doi:10.1098/rstb.2008.0213

    Article  Google Scholar 

  25. Andres KH, von During M, Veh RW (1999) Subnuclear organization of the rat habenular complexes. J Comp Neurol 407(1):130–150

    Article  CAS  PubMed  Google Scholar 

  26. Hikosaka O, Habenula (2007) Scholarpedia 6:2703, 2

    Article  Google Scholar 

  27. Carlson J, Noguchi K, Ellison G (2001) Nicotine produces selective degeneration in the medial habenula and fasciculus retroflexus. Brain Res 906(1–2):127–134

    Article  CAS  PubMed  Google Scholar 

  28. Herkenham M, Nauta WJ (1979) Efferent connections of the habenular nuclei in the rat. J Comp Neurol 187(1):19–47. doi:10.1002/cne.901870103

    Article  CAS  PubMed  Google Scholar 

  29. Qin C, Luo M (2009) Neurochemical phenotypes of the afferent and efferent projections of the mouse medial habenula. Neuroscience 161(3):827–837. doi:10.1016/j.neuroscience.2009.03.085

    Article  CAS  PubMed  Google Scholar 

  30. Eckenrode TC, Barr GA, Battisti WP, Murray M (1987) Acetylcholine in the interpeduncular nucleus of the rat: normal distribution and effects of deafferentation. Brain Res 418(2):273–286

    Article  CAS  PubMed  Google Scholar 

  31. Kou ZY, Li MS, Zhang CX (2003) The pressor effect with electro-stimulation of insular cortex, central amygdale is mediated by habenula. J Chin Appl Phys 19:334–336

    Google Scholar 

  32. Kim U, Lee T (2012) Topography of descending projections from anterior insular and medial prefrontal regions to the lateral habenula of the epithalamus in the rat. Eur J Neurosci 35(8):1253–1269. doi:10.1111/j.1460-9568.2012.08030.x

    Article  PubMed  Google Scholar 

  33. Ling SC, Li QS, J.W. (1995) The collateral projection from the parafascicular thalamic nucleus and the lateral habenular nucleus to the midbrain periaqueductal gray and nucleus raphe magnus in the rat—a fluorescent double-labeling study. Chin J Neur 11 (3):231–234

  34. Wang S, Liu MZ, Jiang Y (1980) Spontaneous discharges of habenular nucleus and its inhibitory action on nucleus raphe magnus. Sci Bull 25:83–88

    Google Scholar 

  35. Geisler S, Wise RA (2008) Functional implications of glutamatergic projections to the ventral tegmental area. Rev Neurosci 19(4–5):227–244

    PubMed Central  PubMed  Google Scholar 

  36. Goncalves L, Sego C, Metzger M (2012) Differential projections from the lateral habenula to the rostromedial tegmental nucleus and ventral tegmental area in the rat. J Comp Neurol 520(6):1278–1300. doi:10.1002/cne.22787

    Article  PubMed  Google Scholar 

  37. Kalen P, Pritzel M, Nieoullon A, Wiklund L (1986) Further evidence for excitatory amino acid transmission in the lateral habenular projection to the rostral raphe nuclei: lesion-induced decrease of high affinity glutamate uptake. Neurosci Lett 68(1):35–40

    Article  CAS  PubMed  Google Scholar 

  38. Christoph GR, Leonzio RJ, Wilcox KS (1986) Stimulation of the lateral habenula inhibits dopamine-containing neurons in the substantia nigra and ventral tegmental area of the rat. J Neurosci: Off J Soc Neurosci 6(3):613–619

    CAS  Google Scholar 

  39. Kiss J, Csaki A, Bokor H, Kocsis K, Kocsis B (2002) Possible glutamatergic/aspartatergic projections to the supramammillary nucleus and their origins in the rat studied by selective [(3)H]D-aspartate labelling and immunocytochemistry. Neuroscience 111(3):671–691

    Article  CAS  PubMed  Google Scholar 

  40. Varga V, Kocsis B, Sharp T (2003) Electrophysiological evidence for convergence of inputs from the medial prefrontal cortex and lateral habenula on single neurons in the dorsal raphe nucleus. Eur J Neurosci 17(2):280–286

    Article  CAS  PubMed  Google Scholar 

  41. Yang SN, Wang S (1990) The functional connection of rat habenular nucleus and lateral hypothalamic area in the regulation of cardiovascular activities. Sheng Li Xue Bao 42(1):82–88

    CAS  PubMed  Google Scholar 

  42. Guidetti V, Dosi C, Bruni Q (2014) The relationship between sleep and headache in children: implications for treatment. Cephalalgia 34(10):767–776

    Article  PubMed  Google Scholar 

  43. Barker JR, Thomas CF, Behan M (2009) Serotonergic projections from the caudal raphe nuclei to the hypoglossal nucleus in male and female rats. Respir Physiol Neurobiol 165(2–3):175–184. doi:10.1016/j.resp.2008.11.008

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  44. Morin LP, Meyer-Bernstein EL (1999) The ascending serotonergic system in the hamster: comparison with projections of the dorsal and median raphe nuclei. Neuroscience 91(1):81–105

    Article  CAS  PubMed  Google Scholar 

  45. Sego C, Goncalves L, Lima L, Furigo IC, Donato J Jr, Metzger M (2014) Lateral habenula and the rostromedial tegmental nucleus innervate neurochemically distinct subdivisions of the dorsal raphe nucleus in the rat. J Comp Neurol 522(7):1454–1484. doi:10.1002/cne.23533

    Article  CAS  PubMed  Google Scholar 

  46. Cao Y, Fujito Y, Matsuyama K, Aoki M (2006) Effects of electrical stimulation of the medullary raphe nuclei on respiratory movement in rats. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 192(5):497–505. doi:10.1007/s00359-005-0087-0

    Article  PubMed  Google Scholar 

  47. Pobbe RL, Zangrossi H Jr (2010) The lateral habenula regulates defensive behaviors through changes in 5-HT-mediated neurotransmission in the dorsal periaqueductal gray matter. Neurosci Lett 479(2):87–91. doi:10.1016/j.neulet.2010.05.021

    Article  CAS  PubMed  Google Scholar 

  48. Yu P, Song G, Liu L, Liu YX (1998) Effects of stimulation at different areas of nucleus raphe dorsalis on genioglossus and diaphragm activities. Sheng Li Xue Bao 50(1):106–110

    CAS  PubMed  Google Scholar 

  49. Peyron C, Petit JM, Rampon C, Jouvet M, Luppi PH (1998) Forebrain afferents to the rat dorsal raphe nucleus demonstrated by retrograde and anterograde tracing methods. Neuroscience 82(2):443–468

    Article  CAS  PubMed  Google Scholar 

  50. Poller WC, Bernard R, Derst C, Weiss T, Madai VI, Veh RW (2011) Lateral habenular neurons projecting to reward-processing monoaminergic nuclei express hyperpolarization-activated cyclic nucleotid-gated cation channels. Neuroscience 193:205–216. doi:10.1016/j.neuroscience.2011.07.013

    Article  CAS  PubMed  Google Scholar 

  51. Viswanath H, Carter AQ, Baldwin PR, Molfese DL, Salas R (2013) The medial habenula: still neglected. Front Hum Neurosci 7:931. doi:10.3389/fnhum.2013.00931

    PubMed Central  PubMed  Google Scholar 

  52. Hsu YW, Tempest L, Quina LA, Wei AD, Zeng H, Turner EE (2013) Medial habenula output circuit mediated by alpha5 nicotinic receptor-expressing GABAergic neurons in the interpeduncular nucleus. J Neurosci: Off J Soc Neurosci 33(46):18022–18035. doi:10.1523/JNEUROSCI. 2927-13.2013

    Article  CAS  Google Scholar 

  53. Wang M, Lin WH, Wang JH, Huang M, Wang CY, Li MX, Wang S (2011) 5-Hydroxytryptamine-mediated apnea caused by the habenular nucleus. Neural Regen Res 6:1554–1558

    CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by grants from the National Natural Science Foundation (No. 30270502), the Science and Technology Bureau of Changchun (No. 04-07SF-071), and the Innovation Foundation of Jilin University (No. 200 CX 2001).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chao-Ying Yan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, MX., Yan, CY. & Wang, S. New insights on the role of the insular cortex and habenula in OSA. Sleep Breath 19, 1347–1353 (2015). https://doi.org/10.1007/s11325-015-1168-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11325-015-1168-0

Keywords

Navigation