Skip to main content
Log in

The Heterogeneous P-Median Problem for Categorization Based Clustering

  • Published:
Psychometrika Aims and scope Submit manuscript

Abstract

The p-median offers an alternative to centroid-based clustering algorithms for identifying unobserved categories. However, existing p-median formulations typically require data aggregation into a single proximity matrix, resulting in masked respondent heterogeneity. A proposed three-way formulation of the p-median problem explicitly considers heterogeneity by identifying groups of individual respondents that perceive similar category structures. Three proposed heuristics for the heterogeneous p-median (HPM) are developed and then illustrated in a consumer psychology context using a sample of undergraduate students who performed a sorting task of major U.S. retailers, as well as a through Monte Carlo analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1.
Figure 2.

Similar content being viewed by others

Notes

  1. For our purposes, the definition of exemplar follows from the category learning literature (e.g., Medin & Schaffer, 1978; Reed, 1972, 1978; Rosch & Mervis, 1975): An exemplar of a category can be any category member, and the most central exemplar of a category is referred to as the category median.

  2. The choices of both the measure of similarity between proximity matrices (Step 1) and the clustering method to use (Step 2) are arbitrary. Neither step relates directly to the objective function Z (i.e., they optimize two different objectives), so we use the Frobenius norm and complete linkage, which provide a quick solution for heuristic C and provide input to the C+IH heuristic.

  3. Let l jg be the index indicating the median associated with object j for an individual member of group g. Then, \(\hat{d}_{ijk}=\sum _{j=1}^{J-1}\sum _{k=j+1}^{J}\sum _{g=1}^{G}p_{ig}d_{i(l_{jg})(l_{kg})}\).

  4. The median stores appear in italics.

References

  • Addelman, S. (1962). Orthogonal main-effect plans for asymmetrical factorial experiments. Technometrics, 4(1), 21–46.

    Article  Google Scholar 

  • Ashby, F.G., Maddox, T.W., & Lee, W.W. (1994). On the dangers of average across subjects when using multidimensional scaling or the similarity-choice model. Psychological Science, 5(3), 144–151.

    Article  Google Scholar 

  • Baum, E.B. (1986). Toward practical ‘neural’ computation for combinatorial optimization problems. In J. Denker (Ed.), Neural networks for computing (pp. 53–64). New York: American Institute of Physics.

    Google Scholar 

  • Berman, O., & Drezner, Z. (2008). The p-median problem under uncertainty. European Journal of Operations Research, 189(1), 19–30.

    Article  Google Scholar 

  • Bettman, J.R., Luce, M.F., & Payne, J.W. (1998). Constructive consumer choice processes. Journal of Consumer Research, 25(3), 187–217.

    Article  Google Scholar 

  • Bijmolt, T.H.A., & Wedel, M. (1995). The effects of alternative methods of collecting similarity data for multidimensional scaling. International Journal of Research in Marketing, 12(4), 363–371.

    Article  Google Scholar 

  • Blanchard, S.J., DeSarbo, W.S., Atalay, A.S., & Harmancioglu, N. (2012). Identifying consumer heterogeneity in unobserved categories. Marketing Letters, 23(1), 177–194.

    Article  Google Scholar 

  • Boone, L.E., & Kurtz, D.L. (2009). Contemporary marketing. Mason: South-Western Educational Publishing.

    Google Scholar 

  • Brusco, M.J., Cradit, J.D., & Tashchian, A. (2003). Multicriterion clusterwise regression for joint segmentation settings: an application to customer value. Journal of Marketing Research, 40(2), 225–234.

    Article  Google Scholar 

  • Brusco, M.J., & Cradit, J.D. (2005). ConPar: a method for identifying groups of concordant subject proximity matrices for subsequent multidimensional scaling analyses. Journal of Mathematical Psychology, 49(2), 142–154.

    Article  Google Scholar 

  • Brusco, M.J., & Köhn, H.-F. (2008a). Comment on ‘Clustering by passing messages between data points’. Science, 319(5864), 726.

    Article  PubMed  Google Scholar 

  • Brusco, M.J., & Köhn, H.-F. (2008b). Optimal partitioning of a data set based on the p-median problem. Psychometrika, 73(1), 89–105.

    Article  Google Scholar 

  • Brusco, M.J., & Köhn, H.-F. (2009). Exemplar-based clustering via simulated annealing. Psychometrika, 74(3), 457–475.

    Article  Google Scholar 

  • Conn, A.R., Scheinberg, K., & Vincente, L.N. (2009). Introduction to derivative-free optimization. Philadelphia: SIAM.

    Book  Google Scholar 

  • Coxon, A.P.M. (1999). Sorting data: collection and analysis. Thousand Oaks: Sage.

    Google Scholar 

  • Crainic, T.G., Gendreau, M., Hansen, P., & Mladenović, N. (2007). Cooperative parallel variable neighborhood search for the p-median. Journal of Heuristics, 10(3), 293–314.

    Article  Google Scholar 

  • Daws, J.T. (1996). The analysis of free-sorting data: beyond pairwise co-occurrence. Journal of Classification, 13(1), 57–80.

    Article  Google Scholar 

  • DeSarbo, W.S. (1982). GENNCLUS: new models for general nonhierarchical clustering analysis. Psychometrika, 47(4), 436–449.

    Google Scholar 

  • DeSarbo, W.S., & Carroll, J.D. (1985). Three-way metric unfolding via alternating weighted least squares. Psychometrika, 50(3), 275–300.

    Article  Google Scholar 

  • DeSarbo, W.S., & Cron, W.L. (1988). A maximum likelihood methodology clusterwise linear regression. Journal of Classification, 5(2), 249–289.

    Article  Google Scholar 

  • Farquhar, P.H., Han, J.Y., Herr, P.M., & Ijiri, Y. (1992). Strategies for leveraging master-brands. Marketing Research, 4(3), 32–43.

    Google Scholar 

  • Fazio, R.H., & Dunton, B.C. (1997). Categorization by race: the impact of automatic and controlled components of racial prejudice. Journal of Experimental Social Psychology, 33(5), 451–470.

    Article  Google Scholar 

  • Forgy, E.W. (1965). Cluster analysis of multivariate data: efficiency vs. interpretability of classifications. Biometrics, 21(3), 768–769.

    Google Scholar 

  • Floudas, C.A. (1995). Non-linear and mixed-integer optimisation. New York: Oxford University Press.

    Google Scholar 

  • Furnas, G.W. (1989). Metric family portraits. Journal of Classification, 6(1), 7–52.

    Article  Google Scholar 

  • Gigerenzer, G., & Todd, P.M. (1999). Simple heuristics that make us smart. New York: Oxford University Press.

    Google Scholar 

  • Griffin, A., & Hauser, J.R. (1993). The voice of the customer. Marketing Science, 12(1), 1–27.

    Article  Google Scholar 

  • Hansen, P., Brimberg, J., Urosevic, D., & Mladenović, N. (2009). Solving large p-median clustering problems by primal-dual variable neighborhood search. Data Mining and Knowledge Discovery, 19(3), 351–375.

    Article  Google Scholar 

  • Hansen, P., & Mladenović, N. (2001). Variable neighborhood search: principles and applications. European Journal of Operational Research, 130, 449–467.

    Article  Google Scholar 

  • Hauser, J.R., Toubia, O., Evgeniou, T., Befurt, R., & Dzyabura, D. (2010). Disjunctions of conjunctions, cognitive simplicity, and consideration sets. Journal of Marketing Research, 47(3), 485–496.

    Article  Google Scholar 

  • Helsen, K., & Green, P. (1991). A computational study of replicated clustering with an application to market segmentation. Decision Sciences, 22(5), 1124–1141.

    Article  Google Scholar 

  • Hubert, L., & Arabie, P. (1985). Comparing partitions. Journal of Classification, 2(1), 193–218.

    Article  Google Scholar 

  • Isen, A.M. (1984). Toward understanding the role of affect in cognition. In R.S. Wyer Jr. & T.K. Srull (Eds.), Handbook of social cognition (pp. 179–236). Hillsdale: Lawrence Erlbaum.

    Google Scholar 

  • Ilog (2006). ILOG CPLEX 10.0 user’s manual.

  • Jedidi, K., & DeSarbo, W.S. (1991). A stochastics multidimensional scaling methodology for the spatial representation of three-mode, three-way pick any/J data. Psychometrika, 56(3), 471–494.

    Article  Google Scholar 

  • John, D.R., & Sujan, M. (1990). Age differences in product categorization. Journal of Consumer Research, 16(March), 452–460.

    Article  Google Scholar 

  • Johnson, S.C. (1967). Hierarchical clustering schemes. Psychometrika, 32(3), 241–254.

    Article  PubMed  Google Scholar 

  • Kalamas, M., Cleveland, M., Laroche, M., & Laufer, R. (2006). The critical role of congruency in prototypical brand extensions. Journal of Strategic Marketing, 14(3), 193–210.

    Article  Google Scholar 

  • Kariv, O., & Hakimi, S.L. (1979). An algorithmic approach to network location problems. II: the p-medians. SIAM Journal on Applied Mathematics, 37(3), 539–560.

    Article  Google Scholar 

  • Kaufman, L., & Rousseeuw, P.J. (2005). Finding groups in data: an introduction to cluster analysis. New York: Wiley.

    Google Scholar 

  • Kelter, S., Cohen, R., Engel, D., List, G., & Stronher, H. (1977). The conceptual structure of aphasic and schizophrenic patients in a nonverbal sorting task. Journal of Psycholinguistic Research, 6(4), 279–303.

    Article  PubMed  Google Scholar 

  • Klastorin, T. (1985). The p-median problem for cluster analysis: a comparative test using the mixture model approach. Management Science, 31(1), 84–95.

    Article  Google Scholar 

  • Köhn, H.-F., Steinley, D., & Brusco, M.J. (2010). The p-median as a tool for clustering psychological data. Psychological Methods, 15(1), 87–95.

    Article  PubMed  Google Scholar 

  • Lakey, B., & Cassady, P.B. (1990). Cognitive processes in perceived social support. Personality Processes and Individual Differences, 59(2), 337–343.

    Google Scholar 

  • Langley, P. (1996). Elements of machine learning. San Francisco: Morgan Kaufmann.

    Google Scholar 

  • Lee, M.D. (2001). Determining the dimensionality of mutli-dimensional scaling represetations for cognitive modeling. Journal of Mathematical Psychology, 45(1), 149–166.

    Article  PubMed  Google Scholar 

  • Love, B.C. (2003). Concept learning. In L. Nadel (Ed.), The encyclopedia of cognitive science (pp. 646–652). London: Nature Publishing Group.

    Google Scholar 

  • Maranzana, F.E. (1963). On the location of supply points to minimize transportation costs. IBM Systems Journal, 2(2), 129–135.

    Article  Google Scholar 

  • Medin, D.L., & Schaffer, M.M. (1978). Context theory of classification learning. Psychological Review, 85(3), 207–238.

    Article  Google Scholar 

  • Mervis, C.B., Catlin, J., & Rosch, E. (1976). Relationships among goodness-of-example, category norms, and word frequency. Bulletin of the Psychonomic Society, 7(3), 283–294.

    Google Scholar 

  • Miller, G.A. (1969). A psychological method to investigate verbal concepts. Journal of Mathematical Psychology, 6(2), 169–191.

    Article  Google Scholar 

  • Mladenović, N., Brimberg, J., Hansen, P., & Moreno-Perez, J.A. (2007). The p-median problem: a survey of metaheuristic approaches. European Journal of Operational Research, 179(3), 927–939.

    Article  Google Scholar 

  • Mladenović, N., & Hansen, P. (1997). Variable neighborhood search. Computers & Operations Research, 24(11), 1097–1100.

    Article  Google Scholar 

  • Perkins, W.S. (1993). The effects of experience and education on the organization of marketing knowledge. Psychology & Marketing, 10(3), 169–183.

    Article  Google Scholar 

  • Rao, V.R., & Katz, R. (1971). Alternative multidimensional scaling methods for large stimulus sets. Journal of Marketing Research, 8(4), 488–494.

    Article  Google Scholar 

  • Reed, S.K. (1972). Pattern recognition and categorization. Cognitive Psychology, 3(3), 382–407.

    Article  Google Scholar 

  • Reed, S.K. (1978). Category vs. item learning: implications for categorization models. Memory & Cognition, 6(6), 612–621.

    Article  Google Scholar 

  • Rosch, E., & Mervis, C.B. (1975). Family resemblances: studies in the internal structure of categories. Cognitive Psychology, 7(4), 573–605.

    Article  Google Scholar 

  • Rosch, E., Simpson, C., & Miller, R.S. (1976). Structural bases of typicality effects. Journal of Experimental Psychology. Human Perception and Performance, 2(4), 491–502.

    Article  Google Scholar 

  • Ross, B.H., & Murphy, G.L. (1999). Food for thought: cross-classification and category organization in a complex real-world domain. Cognitive Psychology, 38(4), 495–554.

    Article  PubMed  Google Scholar 

  • Rousseeuw, P.J. (1987). Silhouettes: a graphical aid to the interpretation and validation of cluster analysis. Journal of Computational and Applied Mathematics, 20(November), 53–65.

    Article  Google Scholar 

  • Shugan, S.M. (1980). The cost of thinking. Journal of Consumer Research, 7(2), 99–111.

    Article  Google Scholar 

  • Simon, H.A. (1955). A behavioral model of rational choice. Quarterly Journal of Economics, 69(1), 99–118.

    Article  Google Scholar 

  • Smith, E.R., Fazio, R.H., & Cejka, M.A. (1996). Accessible attitudes influence categorization of multiply categorizable objects. Journal of Personality and Social Psychology, 71(5), 888–898.

    Article  PubMed  Google Scholar 

  • Sujan, M., & Dekleva, C. (1987). Product categorization and inference making: some implications for comparative advertising. Journal of Consumer Research, 14(3), 372–378.

    Article  Google Scholar 

  • Takane, Y. (1980). Analysis of categorizing behavior using a quantification method. Behaviormetrika, 7(8), 75–86.

    Article  Google Scholar 

  • Tucker, L.R., & Messick, S.J. (1963). An individual differences model for multidimensional scaling. Psychometrika, 28(4), 333–367.

    Article  Google Scholar 

  • Urban, G.L., Hulland, J.S., & Weinberg, B.D. (1993). Premarket forecasting for new consumer durable goods: modeling categorization, elimination, and consideration phenomena. Journal of Marketing, 57(2), 47–63.

    Article  Google Scholar 

  • Vapnik, V. (1998). Statistical learning theory. New York: Wiley.

    Google Scholar 

  • Ward, J.H. (1963). Hierarchical grouping to optimize an objective function. Journal of the American Statistical Association, 38(301), 236–244.

    Article  Google Scholar 

  • Wedel, M., & Kamakura, W.A. (2000). Market segmentation: conceptual and methodological foundations. Norwell: Kluwer Academic.

    Google Scholar 

  • Yang, C.C., & Yang, C.C. (2007). Separating latent classes by information criteria. Journal of Classification, 24(2), 183–203.

    Article  Google Scholar 

Download references

Acknowledgements

We wish to thank the Editor, the Associate Editor, and three anonymous reviewers for their constructive comments which have helped improve the contribution and quality of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Simon J. Blanchard.

Appendix: Automatic Search Procedure for Penalty Term δ

Appendix: Automatic Search Procedure for Penalty Term δ

Optimizing Z and leaving δ to be estimated always leads to a trivial solution of δ=0. As such, we propose to identify a value of δ by optimizing a somewhat auxiliary objective function h(δ). This function compares the structures obtained by solving the HPM problem Z and the piles provided by each individual participant in the sorting task using the Adjusted Rand Index (Hubert & Arabie, 1985). The shape and space of function h(δ) is not known exactly but assumes known category structures so its derivatives are not available and direct estimation is not possible. However, we attempt to solve the problem of estimating δ by Derivative-Free Optimization (DFO) methods (Conn, Scheinberg, & Vicente, 2009) by using a simplified physics surrogate: a function that approximates the real function. First to evaluate h(δ), for a given δ, we proceed as follows:

  1. 1.

    Solve HPM in (10) using δ, for all g=1,…,G. Use one application of the constructive heuristic and the improvement heuristic (C+IH). Denote C g for g=1,…,G, for the solutions obtained.

  2. 2.

    For all g=1,…,G, compute the Adjusted Rand Index between each individual’s estimated category structure and the piles created. Let \(\mathit{ARI}_{C_{g}}\) be the Adjusted Rand Index obtained using solution C g .

  3. 3.

    Let \(h(\delta)=\mathit{average}(\mathit{ARI}_{C_{g}})\).

1.1 A.1 Optimizing h(δ)

The proposed DFO consists of a univariate pattern-search method that takes a pair of search directions γ and −γ for h(δ) at each iteration. First, it evaluates the function at a unit step length along each direction. The (candidate) solutions obtained form a frame around the current iterate (i.e. current best solution for h(δ)). If either h(δγ) or h(δ+γ) is greater than h(δ) (recall the goal of maximizing ARI), it becomes the new best solution, the center of the frame shifts to this new value of δ, and the frame is augmented. If neither h(δγ) or h(δ+γ) improve on h(δ), the frame shrinks. Such iterations repeat until a stopping criterion is met (e.g., number of h(δ) evaluations, minimum size of γ, maximum allowed time).

For certain DFO methods, it is possible to prove global convergence to a stationary point of the function being optimized. The presence of noise and other forms of inexactness may affect the performance of the pattern-search algorithm (e.g., use of an inexact solution for C g ) and convergence. Yet it should suffice to provide a good solution for δ that can be used along with the heuristics presented herein. The algorithm in Figure A1 presents the pseudo-code of the proposed pattern-search method for this automated penalty selection.

Figure A1.
figure 3

Pseudo-code of the pattern-search for automatically setting δ.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Blanchard, S.J., Aloise, D. & DeSarbo, W.S. The Heterogeneous P-Median Problem for Categorization Based Clustering. Psychometrika 77, 741–762 (2012). https://doi.org/10.1007/s11336-012-9283-3

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11336-012-9283-3

Key words

Navigation