Skip to main content
Log in

Experimental Techniques for the Mechanical Characterization of One-Dimensional Nanostructures

  • Published:
Experimental Mechanics Aims and scope Submit manuscript

Abstract

New materials and nanostructures with superior electro-mechanical properties are emerging in the development of novel devices. Engineering application of these materials and nanostructures requires accurate mechanical characterization, which in turn requires development of novel experimental techniques. In this paper, we review some of the existing experimental techniques suitable to investigate the mechanics of one-dimensional (1D) nanostructures. Particular emphasis is placed on techniques that allow comparison of quantities measured in the tests with predictions arising from multiscale computer simulations on a one to one basis. We begin with an overview of major challenges in the mechanical characterization of 1D nanostructures, followed by a discussion of two distinct types of experimental techniques: nanoindentation/atomic force microscopy (AFM) and in-situ electron microscopy testing. We highlight a recently developed in-situ transmission and scanning electron microscopy testing technique, for investigating the mechanics of thin films and 1D nanostructures, based on microelectromechanical systems (MEMS) technology. We finally present the coupled field (electro and mechanical) characterization of a NEMS bistable switch in-situ a scanning electron microscope (SEM).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Iijima S (1991) Helical microtubules of graphitic carbon. Nature 354(6348):56–58.

    Article  Google Scholar 

  2. Xia YN, Yang PD, Sun YG, Wu YY, Mayers B, Gates B, Yin YD, Kim F, Yan YQ (2003) One-dimensional nanostructures: Synthesis, characterization, and applications. Adv Mater 15(5):353–389.

    Article  Google Scholar 

  3. Ke CH, Espinosa HD (2006) Nanoelectromechanical Systems (NEMS) and modeling. Handbook of Theoretical and Computational Nanotechnology. American Scientific Publishers.

  4. Yu MF, Lourie O, Dyer MJ, Moloni K, Kelly TF, Ruoff RS (2000) Strength and breaking mechanism of multiwalled carbon nanotubes under tensile load. Science 287(5453):637–640.

    Article  Google Scholar 

  5. Wildoer JWG, Venema LC, Rinzler AG, Smalley RE, Dekker C (1998) Electronic structure of atomically resolved carbon nanotubes. Nature 391(6662):59–62.

    Article  Google Scholar 

  6. Li DY, Wu YY, Kim P, Shi L, Yang PD, Majumdar A (2003) Thermal conductivity of individual silicon nanowires. Appl Phys Lett 83(14):2934–2936.

    Article  Google Scholar 

  7. Duan XF, Huang Y, Agarwal R, Lieber CM (2003) Singlenanowire electrically driven lasers. Nature 421(6920):241–245.

    Article  Google Scholar 

  8. Dalton AB, Collins S, Munoz E, Razal JM, Ebron VH, Ferraris JP, Coleman JN, Kim BG, Baughman RH (2003) Super-tough carbon-nanotube fibres—These extraordinary composite fibres can be woven into electronic textiles. Nature 423(6941):703.

    Article  Google Scholar 

  9. Fennimore AM, Yuzvinsky TD, Han WQ, Fuhrer MS, Cumings J, Zettl A (2003) Rotational actuators based on carbon nanotubes. Nature 424(6947):408–410.

    Article  Google Scholar 

  10. Ke CH, Espinosa HD (2004) Feedback controlled nanocantilever device. Appl Phys Lett 85(4):681–683.

    Article  Google Scholar 

  11. Cui Y, Wei QQ, Park HK, Lieber CM (2001) Nanowire nanosensors for highly sensitive and selective detection of biological and chemical species. Science 293(5533):1289–1292.

    Article  Google Scholar 

  12. Zhang SL, Mielke SL, Khare R, Troya D, Ruoff RS, Schatz GC, Belytschko T (2005) Mechanics of defects in carbon nanotubes: Atomistic and multiscale simulations. Phys Rev B 71(11).

  13. Gall K, Diao JK, Dunn ML (2004) The strength of gold nanowires. Nano Lett 4(12):2431–2436.

    Article  Google Scholar 

  14. Haque MA, Saif MTA (2004) Deformation mechanisms in free-standing nanoscale thin films: A quantitative in situ transmission electron microscope study. Proc Natl Acad Sci USA 101(17):6335–6340.

    Article  Google Scholar 

  15. Zhu Y, Espinosa HD (2005) An electromechanical material testing system for in situ electron microscopy and applications. Proc Natl Acad Sci USA 102(41):14503–14508.

    Article  Google Scholar 

  16. Ke CH, Pugno N, Peng B, Espinosa HD (2005) Experiments and modeling of carbon nanotube-based NEMS devices. J Mech Phys Solids 53(6):1314–1333.

    Article  MATH  Google Scholar 

  17. Falvo MR, Clary GJ, Taylor RM, Chi V, Brooks FP,Washburn S, Superfine R (1997) Bending and buckling of carbon nanotubes under large strain. Nature 389(6651):582–584.

    Article  Google Scholar 

  18. Williams PA, Papadakis SJ, Falvo MR, Patel AM, Sinclair M, Seeger A, Helser A, Taylor RM, Washburn S, Superfine R (2002) Controlled placement of an individual carbonnanotube onto a microelectromechanical structure. Appl Phys Lett 80(14):2574–2576.

    Article  Google Scholar 

  19. Poncharal P, Wang ZL, Ugarte D, de Heer WA (1999) Electrostatic deflections and electromechanical resonances of carbon nanotubes. Science 283(5407):1513–1516.

    Article  Google Scholar 

  20. Cumings J, Zettl A (2000) Low-friction nanoscale linear bearing realized from multiwall carbon nanotubes. Science 289(5479):602–604.

    Article  Google Scholar 

  21. Smith PA, Nordquist CD, Jackson TN, Mayer TS, Martin BR, Mbindyo J, Mallouk TE (2000) Electric-field assisted assembly and alignment of metallic nanowires. Appl Phys Lett 77(9):1399–1401.

    Article  Google Scholar 

  22. Chen XQ, Saito T, Yamada H, Matsushige K (2001) Aligning single-wall carbon nanotubes with an alternatingcurrent electric field. Appl Phys Lett 78(23):3714–3716.

    Article  Google Scholar 

  23. Chung J, Lee J (2003) Nanoscale gap fabrication and integration of carbon nanotubes by micromachining. Sens Actuators A-Phys 104(3):229–235.

    Article  Google Scholar 

  24. Hughes MP, Morgan H (1998) Dielectrophoretic trapping of single sub-micrometre scale bioparticles. J Phys D Appl Phys 31(17):2205–2210.

    Article  Google Scholar 

  25. Huang Y, Duan XF, Wei QQ, Lieber CM (2001) Directed assembly of one-dimensional nanostructures into functional networks. Science 291(5504):630–633.

    Article  Google Scholar 

  26. Fujiwara M, Oki E, Hamada M, Tanimoto Y, Mukouda I, Shimomura Y (2001) Magnetic orientation and magnetic properties of a single carbon nanotube. J Phys Chem A 105(18):4383–4386.

    Article  Google Scholar 

  27. Rao SG, Huang L, Setyawan W, Hong SH (2003) Large-scale assembly of carbon nanotubes. Nature 425(6953):36–37.

    Article  Google Scholar 

  28. Piner RD, Zhu J, Xu F, Hong SH, Mirkin CA (1999) “Dip-pen” nanolithography. Science 283(5402):661–663.

    Article  Google Scholar 

  29. Kim KH, Moldovan N, Espinosa HD (2005) A nanofountain probe with sub-100 nm molecular writing resolution. Small 1(6):632–635.

    Article  Google Scholar 

  30. Dai HJ (2000) Controlling nanotube growth. Physics World 13(6):43–47.

    Google Scholar 

  31. Kong J, Soh HT, Cassell AM, Quate CF, Dai HJ (1998) Synthesis of individual single-walled carbon nanotubes on patterned silicon wafers. Nature 395(6705):878–881.

    Article  Google Scholar 

  32. He RR, Gao D, Fan R, Hochbaum AI, Carraro C, Maboudian R, Yang PD (2005) Si nanowire bridges in microtrenches: Integration of growth into device fabrication. Adv Mater 17(17):2098–+.

    Article  Google Scholar 

  33. Salvetat JP, Briggs GAD, Bonard JM, Bacsa RR, Kulik AJ, Stockli T, Burnham NA, Forro L (1999) Elastic and shear moduli of single-walled carbon nanotube ropes. Phys Rev Lett 82(5):944–947.

    Article  Google Scholar 

  34. Wong EW, Sheehan PE, Lieber CM (1997) Nanobeam mechanics: Elasticity, strength, and toughness of nanorods and nanotubes. Science 277(5334):1971–1975.

    Article  Google Scholar 

  35. Walters DA, Ericson LM, Casavant MJ, Liu J, Colbert DT, Smith KA, Smalley RE (1999) Elastic strain of freelysuspended single-wall carbon nanotube ropes. Appl Phys Lett 74(25):3803–3805.

    Article  Google Scholar 

  36. Wu B, Heidelberg A, Boland JJ (2005) Mechanical properties of ultrahigh-strength gold nanowires. Nat Mat 4(7):525–529.

    Article  Google Scholar 

  37. Marszalek PE, Greenleaf WJ, Li HB, Oberhauser AF, Fernandez JM (2000) Atomic force microscopy captures quantized plastic deformation in gold nanowires. Proc Natl Acad Sci USA 97(12):6282–6286.

    Article  Google Scholar 

  38. Marszalek PE, Li HB, Oberhauser AF, Fernandez JM (2002) Chair–boat transitions in single polysaccharide molecules observed with force-ramp AFM. Proc Natl Acad Sci USA 99(7):4278–4283.

    Article  Google Scholar 

  39. Rief M, Gautel M, Oesterhelt F, Fernandez JM, Gaub HE (1997) Reversible unfolding of individual titin immunoglobulin domains by AFM. Science 276(5315):1109–1112.

    Article  Google Scholar 

  40. Tan EPS, Goh CN, Sow CH, Lim CT (2005) Tensile test of a single nanofiber using an atomic force microscope tip. Appl Phys Lett 86(7).

  41. Li XD, Hao HS, Murphy CJ, Caswell KK (2003) Nanoindentation of silver nanowires. Nano Lett 3(11):1495–1498.

    Article  Google Scholar 

  42. Feng G, Nix WD, Yoon Y, Lee CJ (2006) A study of the mechanical properties of nanowires using nanoindentation. J Appl Phys 99(7).

  43. Waters JF, Guduru PR, Jouzi M, Xu JM, Hanlon T, Suresh S (2005) Shell buckling of individual multiwalled carbon nanotubes using nanoindentation. Appl Phys Lett 87(10).

  44. Pugno N, Peng B, Espinosa HD (2005) Predictions of strength in MEMS components with defects—A novel experimental–theoretical approach. Int J Solids Struct 42(2):647–661.

    Article  MATH  Google Scholar 

  45. Espinosa HD, Prorok BC, Fischer M (2003) A methodology for determining mechanical properties of freestanding thin films and MEMS materials. J Mech Phys Solids 51(1):47–67.

    Article  Google Scholar 

  46. Espinosa HD, Prorok BC, Peng B (2004) Plasticity size effects in free-standing submicron polycrystalline FCC films subjected to pure tension. J Mech Phys Solids 52(3):667–689.

    Article  Google Scholar 

  47. Espinosa HD, Peng B (2005) A new methodology to investigate fracture toughness of freestanding MEMS and advanced materials in thin film form. J Microelectromech Sys 14(1):153–159.

    Article  Google Scholar 

  48. Uchic MD, Dimiduk DM, Florando JN, Nix WD (2004) Sample dimensions influence strength and crystal plasticity. Science 305(5686):986–989.

    Article  Google Scholar 

  49. Greer JR, Oliver WC, Nix WD (2005) Size dependence of mechanical properties of gold at the micron scale in the absence of strain gradients. Acta Mater 53(6):1821–1830.

    Article  Google Scholar 

  50. Zhang H, Schuster BE, Wei Q, Ramesh KT (2006) The design of accurate micro-compression experiments. Scr Mater 54(2):181–186.

    Article  Google Scholar 

  51. Cheng S, Spencer JA, Milligan WW (2003) Strength and tension/compression asymmetry in nanostructured and ultrafine-grain metals. Acta Mater 51(15):4505–4518.

    Article  Google Scholar 

  52. Legros M, Dehm G, Balk TJ, Arzt E, Bostrom O, Gergaud P, Thomas O, Kaouache B (2003) Material Sciences Society Symposium Proceedings.

  53. Minor AM, Morris JW, Stach EA (2001) Quantitative in situ nanoindentation in an electron microscope. Appl Phys Lett 79(11):1625–1627.

    Article  Google Scholar 

  54. Zhu Y, Moldovan N, Espinosa HD (2005) A microelectromechanical load sensor for in situ electron and x-ray microscopy tensile testing of nanostructures. Appl Phys Lett 86(1).

  55. Espinosa HD, ZhuY, Moldovan N (2005) Design and operation of a MEMS-based material testing system for in-situ electron microscopy testing of nanostructures. Accepted by Journal of Microelectromechanical Systems.

  56. Zhu Y, Corigliano A, Espinosa HD (2006) A thermal actuator for nanoscale in-situ microscopy testing: Design and characterization. J Micromech Microeng 16(2):242–253.

    Article  Google Scholar 

  57. Kahn H, Ballarini R, Mullen RL, Heuer AH (1999) Electrostatically actuated failure of microfabricated polysilicon fracture mechanics specimens. Proc R Soc Lond A Math Phys Sci 455(1990):3807–3823.

    Article  Google Scholar 

  58. Chu LL, Que L, Gianchandani YB (2002) Measurements of material properties using differential capacitive strain sensors. J Microelectromech Sys 11(5):489–498. Kluwer Academic Publisher.

    Article  Google Scholar 

  59. Senturia SD (2002) Microsystem design. Kluwer Academic Publisher.

  60. Greek S, Ericson F, Johansson S, Furtsch M, Rump A (1999) Mechanical characterization of thick polysilicon films: Young’s modulus and fracture strength evaluated with microstructures. J Micromech Microeng 9(3):245–251.

    Article  Google Scholar 

  61. Sharpe WN, Jackson KM, Hemker KJ, Xie ZL (2001) Effect of specimen size on Young’s modulus and fracture strength of polysilicon. J Microelectromech Sys 10(3):317–326.

    Article  Google Scholar 

  62. Tsuchiya T, Tabata O, Sakata J, Taga Y (1998) Specimen size effect of tensile strength of surface-micromachined polycrystalline silicon thin films. JMicroelectromech Sys 7(1): 106–113.

    Article  Google Scholar 

  63. Espinosa HD, Berbenni S, Panico M, Schwarz KW (2005) An interpretation of size-scale plasticity in geometrically confined systems. Proc Natl Acad Sci USA 102(47):16933–16938.

    Article  Google Scholar 

  64. Huhtala M, Krasheninnikov AV, Aittoniemi J, Stuart SJ, Nordlund K, Kaski K (2004) Improved mechanical load transfer between shells of multiwalled carbon nanotubes. Phys Rev B 70(4).

  65. Kis A, Csanyi G, Salvetat JP, Lee TN, Couteau E, Kulik AJ, Benoit W, Brugger J, Forro L (2004) Reinforcement of single-walled carbon nanotube bundles by intertube bridging. Nat Mat 3(3):153–157.

    Article  Google Scholar 

  66. Rueckes T, Kim K, Joselevich E, Tseng GY, Cheung CL, Lieber CM (2000) Carbon nanotube-based nonvolatile random access memory for molecular computing. Science 289(5476):94–97.

    Article  Google Scholar 

  67. Kim P, Lieber CM (1999) Nanotube nanotweezers. Science 286(5447):2148–2150.

    Article  Google Scholar 

  68. Sazonova V, Yaish Y, Ustunel H, Roundy D, Arias TA, Mceuen PL (2004) A tunable carbon nanotube electromechanical oscillator. Nature 431(7006):284–287.

    Article  Google Scholar 

  69. Kinaret JM, Nord T, Viefers S (2003) A carbon-nanotube-based nanorelay. Appl Phys Lett 82(8):1287–1289.

    Article  Google Scholar 

  70. Jang JE, Cha SN, Choi Y, Amaratunga GAJ, Kang DJ, Hasko DG, Jung JE, Kim JM (2005) Nanoelectromechanical switches with vertically aligned carbon nanotubes. Appl Phys Lett 87(16).

  71. Ke CH, Espinosa HD (2006) In-situ Electron Microscopy Electro-Mechanical Characterization of a NEMS Bistable Device, Small 2(12):1484–1489.

    Google Scholar 

  72. Dequesnes M, Rotkin SV, Aluru NR (2002) Calculation of pull-in voltages for carbon-nanotube-based nanoelectromechanical switches. Nanotechnology 13(1):120–131.

    Article  Google Scholar 

  73. Ke CH, Espinosa HD, Pugno N (2005) Numerical analysis of nanotube based NEMS devices—Part II: Role of finite kinematics, stretching and charge concentrations. Trans ASME-J App Mech 72(5):726–731.

    MATH  Google Scholar 

  74. Ke CH, Espinosa HD (2005) Numerical analysis of nanotube-based NEMS devices—Part I: Electrostatic charge distribution on multiwalled nanotubes. Trans ASME-J App Mech 72(5):721–725.

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. D. Espinosa.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhu, Y., Ke, C. & Espinosa, H.D. Experimental Techniques for the Mechanical Characterization of One-Dimensional Nanostructures. Exp Mech 47, 7–24 (2007). https://doi.org/10.1007/s11340-006-0406-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11340-006-0406-6

Keywords

Navigation