Skip to main content
Log in

Detwinning of High-Purity Zirconium: In-Situ Neutron Diffraction Experiments

  • Published:
Experimental Mechanics Aims and scope Submit manuscript

Abstract

Twinning is an important deformation mode in hexagonal metals to accommodate deformation along the c-axis. It differs from slip in that it accommodates shear by means of crystallographic reorientation of domains within the grain. Such reorientation has been shown to be reversible (detwinning) in magnesium alloy aggregates. In this paper we perform in-situ neutron diffraction reversal experiments on high-purity Zr at room temperature and liquid nitrogen temperature, and follow the evolution of twin fraction. The experiments were motivated by previous studies done on clock-rolled Zr, subjected to deformation history changes (direction and temperature), in the quasi-static regime, for temperatures ranging from 76 K to 450 K. We demonstrate here for the first time that detwinning of \(\left\{ {10\overline 1 2} \right\}\left\langle {10\overline 1 \overline 1 } \right\rangle \) tensile twins is favored over the activation of a different twin variant in grains of high-purity polycrystalline Zr. A visco-plastic self-consistent (VPSC) model developed previously, which includes combined slip and twin deformation, was used here to simulate the reversal behavior of the material and to interpret the experimental results in terms of slip and twinning activities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Pochettino AA, Gannio N, Vial Edwards C et al (1992) Texture and pyramidal slip in Ti, Zr and their alloys. Scr Metall Mater 27:1859–1863. doi:10.1016/0956-716X(92)90033-B.

    Article  Google Scholar 

  2. Bingert JF, Mason TA, Kaschner GC et al (2002) Deformation twinning in polycrystalline Zr: insights from electron backscattered diffraction characterization. Metall Mater Trans A 33A:955–963.

    Google Scholar 

  3. Fundenberger JJ, Philippe MJ, Esling C (1990) Mechanical twinning at high temperatures in some hexagonal alloys. Scr Metall Mater 24:1215–1220. doi:10.1016/0956-716X(90)90330-J.

    Article  Google Scholar 

  4. Kaschner GC, Gray GT III (2000) The influence of crystallographic texture and interstitial impurities on the mechanical behavior of Zirconium. Metall Mater Trans A 31A:1997–2003. doi:10.1007/s11661-000-0227-7.

    Article  Google Scholar 

  5. McCabe RJ, Cerreta EK, Misra A et al (2006) Effects of texture, temperature and strain on the deformation modes of zirconium. Philos Mag 8623:3595–3611. doi:10.1080/14786430600684500.

    Article  Google Scholar 

  6. Kaschner GC, Bingert JF, Liu C et al (2001) Mechanical response of zirconium—II. Experimental and finite element analysis of bent beams. Acta Mater 49:3097–3108. doi:10.1016/S1359-6454(01)00191-4.

    Article  Google Scholar 

  7. McCabe RJ, Proust G, Cerreta EK et al (2008) Quantitative analysis of deformation twinning in zirconium. Int J Plast. doi:10.1016/j.iplas.2008.03.010

  8. Proust G, Tomé CN, Kaschner GC (2007) Modeling texture, twinning and hardening evolution during deformation of hexagonal materials. Acta Mater 55:2137–2148. doi:10.1016/j.actamat.2006.11.017.

    Article  Google Scholar 

  9. Beyerlein IJ, Tomé CN (2008) A dislocation-based constitutive law for pure Zr including temperature effects. Int J Plast 24:867–895. doi:10.1016/j.ijplas.2007.07.017.

    Article  MATH  Google Scholar 

  10. Kaschner GC, Tome CN, Beyerlein IJ et al (2006) Role of twinning in the hardening response of zirconium during temperature reloads. Acta Mater 54:2887–2896. doi:10.1016/j.actamat.2006.02.036.

    Article  Google Scholar 

  11. Jain A, Agnew SR (2006) Effect of twinning on the mechanical behavior of a magnesium alloy sheet during strain path changes. In: Luo AA, Neelameggham N, Beals R (eds) Magnesium technology. TMS, Warrendale, PA, p 219.

    Google Scholar 

  12. Brown DW, Jain A, Agnew SR et al (2007) Twinning and detwinning during cyclic deformation of Mg alloy AZ31B. Mater Sci Forum 539–5434:3407.

    Article  Google Scholar 

  13. Lou XY, Li M, Boger RK et al (2007) Hardening evolution of AZ31B Mg sheet. Int J Plast 231:44. doi:10.1016/j.ijplas.2006.03.005.

    Article  MATH  Google Scholar 

  14. Partridge PG (1965) Cyclic twinning in fatigued hexagonal close-packed metals. Philos Mag 12:1043–1054. doi:10.1080/14786436508228133.

    Article  Google Scholar 

  15. Rangaswamy P, Bourke MAM, Brown DW et al (2002) A study of twinning in zirconium using neutron diffraction and polycrystalline modeling. Metall Mater Trans A 33A:757–763.

    Google Scholar 

  16. Bourke MAM, Dunand D, Ustundag E (2002) SMARTS—a spectrometer for strain measurement in engineering materials. Appl Phys A A74:S1707. doi:10.1007/s003390201747.

    Article  Google Scholar 

  17. Brown DW, Agnew SR, Bourke MAM et al (2005) Internal strain and texture evolution during deformation twinning in magnesium. Mater Sci Eng A 3991–2:1. doi:10.1016/j.msea.2005.02.016.

    Google Scholar 

  18. Bourke MAM, Goldstone JA, Holden TM (1992) Residual stress measurement using the pulsed neutron source at LANSCE. In: Hutchings, MT, Krawitz, AD (eds) Measurement of residual and applied stress using neutron diffraction. Kluwer, The Netherlands, pp 369–382

  19. Proust G, Tomé CN, Jain A et al (2008) Modeling the effect of twinning and detwinning during strain-path changes of magnesium alloy AZ31. Int J Plast. doi:10.1016/j.iplas.2008.05.005

Download references

Acknowledgments

Work at LANL was supported under Office of Basic Energy Sciences Project FWP 06SCPE401 and U.S. DOE Contract No. W-7405-ENG-36.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. Proust.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Proust, G., Kaschner, G.C., Beyerlein, I.J. et al. Detwinning of High-Purity Zirconium: In-Situ Neutron Diffraction Experiments. Exp Mech 50, 125–133 (2010). https://doi.org/10.1007/s11340-008-9213-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11340-008-9213-6

Keywords

Navigation