Skip to main content

Advertisement

Log in

Phylogeography of ten native herbaceous species in the temperate region of Japan: implication for the establishment of seed transfer zones for revegetation materials

  • Original Paper
  • Published:
Landscape and Ecological Engineering Aims and scope Submit manuscript

Abstract

Revegetation using native species requires the development of seed transfer zones that capture genetic distinctiveness and adaptive potentials while avoiding potential maladaptation and genetic contamination by exotic genotypes. Delineation based on phylogeographic information has recently been used to establish seed transfer zones; however, only a few herbaceous species that are suitable for revegetation have been investigated in the temperate regions of Japan. We investigated the phylogeography of non-coding regions of chloroplast DNA of ten native species in the temperate regions of Japan. Although no species showed clear-cut geographical distributions of the 2–14 haplotypes identified, spatially constrained Bayesian clustering showed two clusters in five species (Calamagrostis epigejos, Eragrostis ferruginea, Imperata cylindrica, Microstegium japonicum, and Microstegium vimineum) but not for others. Posterior modes of clusters for I. cylindrica and M. vimineum showed delineations at Chubu (the middle of Honshu Island), which divide the study region into northeastern and southwestern regions, indicating that these species had recovered from glacial refugia. Posterior mode of cluster for E. ferruginea showed that one consists of a coastal zone along the Pacific Ocean side of western Japan, while the other consists of the remaining area, indicating range expansion from south coast to north. Delineation of C. epigejos and M. japonicum were unclear. The mixed results indicated that establishing seed transfer zones for herbaceous species in Japan will require phylogeographical studies on a wide range of species that may be suitable for revegetation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Aavik T, Edwards PJ, Holderegger R et al (2012) Genetic consequences of using seed mixtures in restoration: a case study of a wetland plant Lychnis flos-cuculi. Biol Conserv 145:195–204. doi:10.1016/j.biocon.2011.11.004

    Article  Google Scholar 

  • Azpilicueta MM, Gallo LA, van Zonneveld M et al (2013) Management of Nothofagus genetic resources: definition of genetic zones based on a combination of nuclear and chloroplast marker data. For Ecol Manage 302:414–424. doi:10.1016/j.foreco.2013.03.037

    Article  Google Scholar 

  • Bradley St Clair J, Kilkenny FF, Johnson RC et al (2013) Genetic variation in adaptive traits and seed transfer zones for Pseudoroegneria spicata (bluebunch wheatgrass) in the northwestern United States. Evol Appl 6:933–948. doi:10.1111/eva.12077

    Article  PubMed  PubMed Central  Google Scholar 

  • Bucci G, González-Martínez SC, Le Provost G et al (2007) Range-wide phylogeography and gene zones in Pinus pinaster Ait. revealed by chloroplast microsatellite markers. Mol Ecol 16:2137–2153. doi:10.1111/j.1365-294X.2007.03275.x

    Article  CAS  PubMed  Google Scholar 

  • Clark LV, Stewart JR, Nishiwaki A et al (2015) Genetic structure of Miscanthus sinensis and Miscanthus sacchariflorus in Japan indicates a gradient of bidirectional but asymmetric introgression. J Exp Bot. doi:10.1093/jxb/eru511

    Google Scholar 

  • Dray S, Dufour A-B, Thioulouse J (2015) Ade4: analysis of ecological data: exploratory and euclidean methods in environmental sciences. Available at: http://cran.r-project.org/package=ade4. Accessed 7 June 2016

  • Dvořáková H, Fér T, Marhold K (2010) Phylogeographic pattern of the European forest grass species Hordelymus europaeus: cpDNA evidence. Flora—Morphol Distrib Funct Ecol Plants 205:418–423. doi:10.1016/j.flora.2009.12.029

    Article  Google Scholar 

  • Environmental Agency of Japan (1997) The national land division for biodiversity conservation. Environmental Agency of Japan, Tokyo (In Japanese)

    Google Scholar 

  • Escudero M, Vargas P, Valcárcel V, Luceño M (2008) Strait of Gibraltar: an effective gene-flow barrier for wind-pollinated Carex helodes (Cyperaceae) as revealed by DNA sequences, AFLP, and cytogenetic variation. Am J Bot 95:745–755. doi:10.3732/ajb.2007342

    Article  PubMed  Google Scholar 

  • Evanno G, Regnaut S, Goudet J (2005) Detecting the number of clusters of individuals using the software STRUCTURE: a simulation study. Mol Ecol 14:2611–2620. doi:10.1111/j.1365-294X.2005.02553.x

    Article  CAS  PubMed  Google Scholar 

  • Fujii N (2007) Chloroplast DNA phylogeography of Pedicularis ser. Gloriosae (Orobanchaceae) in Japan. J Plant Res 120:491–500. doi:10.1007/s10265-007-0083-2

    Article  CAS  PubMed  Google Scholar 

  • Fujii N, Tomaru N, Okuyama K et al (2002) Chloroplast DNA phylogeography of Fagus crenata (Fagaceae) in Japan. Plant Syst Evol 232:21–33. doi:10.1007/s006060200024

    Article  CAS  Google Scholar 

  • Guillot G, Renaud S, Ledevin R et al (2012) A unifying model for the analysis of phenotypic, genetic, and geographic data. Syst Biol 61:897–911. doi:10.1093/sysbio/sys038

    Article  PubMed  Google Scholar 

  • Hall T (2013) BioEdit v7.2.5: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Available at: http://www.mbio.ncsu.edu/bioedit/bioedit.html. Accessed 7 June 2016

  • Hamrick JL, Godt MJW, Sherman-Broyles SL (1992) Factors influencing levels of genetic diversity in woody plant species. New For 6:95–124

    Article  Google Scholar 

  • Hayakawa H, Aakasaka M, Shimono Y et al (2014) Phylogeography based on the nuclear ribosomal DNA internal transcribed spacer region of native Miscanthus sinensis (Poaceae) populations in Japan. Weed Biol Manag 14:251–261

    Article  CAS  Google Scholar 

  • Herget ME, Hufford KM, Mummey DL, Shreading LN (2015) Consequences of seed origin and biological invasion for early establishment in restoration of a North American grass species. PLoS One 10:e0119889. doi:10.1371/journal.pone.0119889

    Article  PubMed  PubMed Central  Google Scholar 

  • Iwasaki T, Aoki K, Seo A (2012) Comparative phylogeography of four component species of deciduous broad-leaved forests in Japan based on chloroplast DNA variation. doi: 10.1007/s10265-011-0428-8

  • Johnson LMK, Galloway LF (2008) From horticultural plantings into wild populations: movement of pollen and genes in Lobelia cardinalis. Plant Ecol 197:55–67. doi:10.1007/s11258-007-9359-9

    Article  Google Scholar 

  • Johnson R, Hellier B, Vance-Borland K (2013) Genecology and seed zones for tapertip onion in the US great Basin. Botany 91:686–694

    Article  Google Scholar 

  • Kira T (1977) A climatological interpretation of Japanese vegetation zones. In: Miyawaki A, Tüxen R (eds) Vegetation science and environmental protection. Maruzen, Tokyo, pp 21–30

    Google Scholar 

  • Kramer AT, Larkin DJ, Fant JB (2015) Assessing potential seed transfer zones for five Forb species from the Great Basin Floristic Region, USA. Nat Areas J 35:174–188

    Article  Google Scholar 

  • Loveless M, Hamrick JL (1984) Ecological determinants of genetic structure in plant populations. Annu Rev Ecol Syst 15:65–95. doi:10.1146/annurev.ecolsys.15.1.65

    Article  Google Scholar 

  • Maekawa F (1943) Prehistoric-naturalized plants to Japan proper. Acta Phytotaxo Geobot 13:274–279 (In Japanese)

    Google Scholar 

  • Matsumura M, Yukimura T (1980) The comparative ecology of intraspecific variants of the Chigaya, Imperata cylindrica var, koenigii (Alang-alang). (1) Habitats of the common and early flowering types of the Chigaya based on the vegetation characteristics. Res Bull Fac Agr Gifu Univ 43:233–248 (In Japanese)

    Google Scholar 

  • McKay JK, Christian CE, Harrison S, Rice KJ (2005) “How local is local?”—A review of practical and conceptual issues in the genetics of restoration. Restor Ecol 13:432–440. doi:10.1111/j.1526-100X.2005.00058.x

    Article  Google Scholar 

  • Michalski SG, Durka W, Jentsch A et al (2010) Evidence for genetic differentiation and divergent selection in an autotetraploid forage grass (Arrhenatherum elatius). Theor Appl Genet 120:1151–1162. doi:10.1007/s00122-009-1242-8

    Article  PubMed  Google Scholar 

  • Mizuguti et al (2004) Genetic difference between two types of Imperate cylindrica (L.) Beauv. characterized by flowering phenology. Grassl Sci 50:9–14

    CAS  Google Scholar 

  • Nomura Y, Shimono Y, Tominaga T (2015) Development of chloroplast DNA markers in Japanese imperata cylindrica. Weed Res 55:329–333. doi:10.1111/wre.12149

    Article  CAS  Google Scholar 

  • Ohsawa T, Ide Y (2011) Phylogeographic patterns of highland and lowland plant species in Japan. Alp Bot 121:49–61. doi:10.1007/s00035-010-0083-z

    Article  Google Scholar 

  • Osada T (1989) Illustrated grasses of Japan. Heibonsha, Tokyo (In Japanese)

    Google Scholar 

  • Paradis E, Jombart T, Schliep K et al (2015) Pegas: population and evolutionary genetics analysis system. Available at: http://cran.r-project.org/package=pegas. Accessed 7 June 2016

  • Petit RJ, Aguinagalde I, de Beaulieu J-L et al (2003) Glacial refugia: hotspots but not melting pots of genetic diversity. Science 300:1563–1565. doi:10.1126/science.1083264

    Article  CAS  PubMed  Google Scholar 

  • Petit RJ, Duminil D, Fineschi S et al (2005) Comparative organization of chloroplast, mitochondrial and nuclear diversity in plant populations. Mol Ecol 14:689–701. doi:10.1111/j.1365-294X.2004.02410.x

    Article  CAS  PubMed  Google Scholar 

  • Plummer M, Best N, Cowles K et al (2015) Coda: output analysis and diagnostics for MCMC. Available at: http://cran.r-project.org/package=coda. Accessed 7 June 2016

  • Pritchard JK, Stephens M, Donnelly P (2000) Inference of population structure using multilocus genotype data. Genetics 155:945–959. doi:10.1111/j.1471-8286.2007.01758.x

    CAS  PubMed  PubMed Central  Google Scholar 

  • R Core Team (2015) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. https://www.R-project.org/. Accessed 7 June 2016

  • Rejzková E, Fér T, Vojta J, Marhold K (2008) Phylogeography of the forest herb Carex pilosa (Cyperaceae). Bot J Linn Soc 158:115–130. doi:10.1111/j.1095-8339.2008.00826.x

    Article  Google Scholar 

  • Saltonstall K (2002) Cryptic invasion by a non-native genotype of the common reed, Phragmites australis, into North America. Proc Natl Acad Sci USA 99:2445–2449. doi:10.1073/pnas.032477999

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Scarcelli N, Barnaud A, Eiserhardt W et al (2011) A set of 100 chloroplast DNA primer pairs to study population genetics and phylogeny in monocotyledons. PLoS One 6:e19954. doi:10.1371/journal.pone.0019954

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Severns PM, Bradford E, Liston A (2013) Whole genome duplication in a threatened grassland plant and the efficacy of seed transfer zones. Divers Distrib 19:455–464. doi:10.1111/ddi.12004

    Google Scholar 

  • Shimono Y, Hayakawa H, Kurokawa S et al (2013a) Phylogeography of mugwort (Artemisia indica), a native pioneer herb in Japan. J Hered 104:830–841. doi:10.1093/jhered/est054

    Article  CAS  PubMed  Google Scholar 

  • Shimono Y, Kurokawa S, Nishida T et al (2013b) Phylogeography based on intraspecific sequence variation in chloroplast DNA of Miscanthus sinensis (Poaceae), a native pioneer grass in Japan. Botany 91:449–456. doi:10.1139/cjb-2012-0212

    Article  CAS  Google Scholar 

  • Sutkowska A, Pasierbiński A, Warzecha T, Mitka J (2014) Multiple cryptic refugia of forest grass Bromus benekenii in Europe as revealed by ISSR fingerprinting and species distribution modelling. Plant Syst Evol 300:1437–1452. doi:10.1007/s00606-013-0972-x

    Article  Google Scholar 

  • Taberlet P, Gielly L, Pautou G, Bouvet J (1991) Universal primers for amplification of three non-coding regions of chloroplast DNA. Plant Mol Biol 17:1105–1109. doi:10.1007/BF00037152

    Article  CAS  PubMed  Google Scholar 

  • The Geneland Development Group (2012) Population genetic and morphometric data analysis using R and the Geneland program. Available at: http://cran.r-project.org/package=Geneland. Accessed 7 June 2016

  • Tominaga T, Kobayashi H, Ueki K (1990) Adaptive differentiation to local populations of Imperata cylindrica in Japan. J Trop Agric 34:250–254

    Google Scholar 

  • Tsuda S, Kobayashi S, Tomita M et al (2014) Phylogeographic study of 10 herbaceous plants native in Japan based on intraspecific chloroplast DNA variation. J Jpn Soc Reveg Technol 40:72–77 (In Japanese)

    Article  Google Scholar 

  • Vander Mijnsbrugge K, Bischoff A, Smith B (2010) A question of origin: where and how to collect seed for ecological restoration. Basic Appl Ecol 11:300–311

    Article  Google Scholar 

  • Wilson B, Darris D, Fiegener R (2008) Seed transfer zones for a native grass Festuca roemeri: genecological evidence. Nativ Plants 9:287–302

    Article  Google Scholar 

  • Wolfe KH, Li WH, Sharp PM (1987) Rates of nucleotide substitution vary greatly among plant mitochondrial, chloroplast, and nuclear DNAs. Proc Natl Acad Sci USA 84:9054–9058. doi:10.1073/pnas.84.24.9054

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yasuda K, Shibayama H (2003) Geographical distribution of chloroplast DNA variation of cogongrass (Imperata cylinfrica) in Japan. Coast Environ 2:51–58 (In Japanese)

    Google Scholar 

Download references

Acknowledgments

We thank Rikyu Matsuki and Chinami Ishiyama for their assistance in field sampling and laboratory works. We are also grateful to two anonymous reviewers for comments on previous versions of the manuscript. The study was funded by an in-house budget of the Central Research Institute of Electric Power Industry and Chubu Electric Power. All the experiments comply with the current laws of Japan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Motoshi Tomita.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tomita, M., Kobayashi, S., Abe, S. et al. Phylogeography of ten native herbaceous species in the temperate region of Japan: implication for the establishment of seed transfer zones for revegetation materials. Landscape Ecol Eng 13, 33–44 (2017). https://doi.org/10.1007/s11355-016-0297-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11355-016-0297-3

Keywords

Navigation