Skip to main content

Advertisement

Log in

Evaluating the potential of immobilized bacterial consortium for black liquor biodegradation

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

Two indigenous bacterial strains, Bacillus megaterium ETLB-1 (accession no. KC767548) and Pseudomonas plecoglossicida ETLB-3 (accession no. KC767547), isolated from soil contaminated with paper mill effluent, were co-immobilized on corncob cubes to investigate their biodegradation potential against black liquor (BL). Results exhibit conspicuous reduction in color and lignin of BL upto 913.46 Co-Pt and 531.45 mg l−1, respectively. Reduction in chlorophenols up to 12 mg l−1 was recorded with highest release of chloride ions, i.e., 1290 mg l−1. Maximum enzyme activity for lignin peroxidase (LiP), manganese peroxidase (MnP), and laccase (LAC) was recorded as 5.06, 8.13, and 8.23 U ml−1, respectively, during the treatment. Scanning electron microscopy (SEM) revealed successful immobilization of bacterial strains in porous structures of biomaterial. Gas chromatography/mass spectroscopy (GC/MS) showed formation of certain low molecular weight metabolites such as 4-hydroxy-benzoic acid, 3-hydroxy-4-methoxybenzaldehyde, ferulic acid, and t-cinnamic acid and removal of majority of the compounds (such as teratogenic phthalate derivatives) during the period of treatment. Results demonstrated that the indigenous bacterial consortium possesses excellent decolorization and lignin degradation capability which enables its commercial utilization in effluents treatment system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

U ml−1 :

Unit per mililiter

w/v :

Weight/volume

v/v :

Volume/volume

Co-Pt:

Cobalt-platinum

OD:

Optical density

C/N:

Carbon and nitrogen ratio

ETLB:

Ecotechnology laboratory bacteria

References

  • Arora DS, Chander M, Gill PK (2002) Involvement of lignin peroxidase, manganese peroxidase and laccase in degradation and selective ligninolysis of wheat straw. Int Biodeterior Biodegrad 50:115–120

    Article  CAS  Google Scholar 

  • Bajpai P, Mehna A, Bajpai PK (1993) Decolorization of kraft bleach plant effluent with the white rot fungus Trametes versicolor. Process Biochem 28:377–384

    Article  CAS  Google Scholar 

  • Belem A, Panteleitchouk AV, Duarte AC, Rocha-Santos TAP, Freitas AC (2008) Treatment of the effluent from a kraft bleach plant with white rot fungi Pleurotus sajor caju and Pleurotus ostreatus. Global Nest 10:426–431

    Google Scholar 

  • Bergmann JG, Sanik J (1957) Determination of trace amounts of chlorine in naptha. Anal Chem 29:241–243

    Article  CAS  Google Scholar 

  • Brányik T, Vicente AA, Oliveira R, Teixeira JA (2004) Physicochemical surface properties of brewing yeast influencing their immobilization onto spent grains in a continuous reactor. Biotechnol Bioeng 88:84–93

    Article  Google Scholar 

  • Brenner DJ, Krieg NR, Staley JT (2005) Bergey’s manual of systematic bacteriology. In: Garrity GM (ed), Vol 2, 2nd edn. Springer, New York

  • Buswell JA, Odier E (1987) Lignin biodegradation. Crit Rev Biotechnol 6:1–60

    Article  CAS  Google Scholar 

  • Chandra R, Singh R (2012) Decolourisation and detoxification of rayon grade pulp paper mill effluent by mixed bacterial culture isolated from pulp paper mill effluent polluted site. Biochem Eng J 61:49–58

    Article  CAS  Google Scholar 

  • Chandra R, Abhishek A, Sankhwar M (2011) Bacterial decolorization and detoxification of black liquor from rayon grade pulp manufacturing paper industry and detection of their metabolic products. Bioresour Technol 102:6429–6436

    Article  CAS  Google Scholar 

  • Chen CY, Kao CM, Chen SC, Chien HY, Lin CE (2007) Application of immobilized cells to the treatment of cyanide wastewater. Water Sci Technol 56:99–107

    Article  CAS  Google Scholar 

  • Chen CY, Kao CM, Chen SC (2008) Application of Klebsiella oxytoca immobilized cells on the treatment of cyanide wastewater. Chemosphere 71:133–139

    Article  CAS  Google Scholar 

  • Chen YH, Chai LY, Zhu YH, Yang ZH, Zheng Y, Zhang H (2012) Biodegradation of kraft lignin by a bacterial strain Comamonas sp. B-9 isolated from eroded bamboo slips. J Appl Microbiol 112:900–906

    Article  CAS  Google Scholar 

  • Chung E, Oh J, Hwang S, Ahn I-S, Yoon YJ (2005) Enhanced production of manganese peroxidase from immobilized Phanerochaete chrysosporium due to the increased autolysis of chlamydospore-like cells. Biotechnol Lett 27:477–481

    Article  CAS  Google Scholar 

  • D’Souza DT, Tiwari R, Sah AK, Raghukumar C (2006) Enhanced production of laccase by a marine fungus during treatment of colored effluents and synthetic dyes. Enzym Microb Technol 38:504–511

    Article  Google Scholar 

  • Franzetti L, Scarpellini M (2007) Characterisation of Pseudomonas spp. isolated from foods. Ann Microbiol 57:39–47

    Article  CAS  Google Scholar 

  • Genisheva Z, Mussatto SI, Oliveira JM, Teixeira JA (2011) Evaluating the potential of wine-making residues and corncobs as support materials for cell immobilization for ethanol production. Ind Crop Prod 34:979–985

    Article  CAS  Google Scholar 

  • Genisheva Z, Mussatto S, Oliveira JM, Teixeira JA (2013) Malolactic fermentation of wines with immobilized lactic acid bacteria—influence of concentration, type of support material and storage conditions. Food Chem 138:1510–1514

    Article  CAS  Google Scholar 

  • Greenberg AE, Connors JJ, Jenkins D, Franson MA (1995) Standard methods for the examination of water and wastewater, 15th edn. American Public Health Association, Washington, DC

    Google Scholar 

  • Kimura M (1980) A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 16:111–120

    Article  CAS  Google Scholar 

  • Ko J, Shimizu Y, Ikeda K, Kim SK, Park CH, Matsui S (2009) Biodegradation of high molecular weight lignin under sulfate reducing conditions: lignin degradability and degradation by-products. Bioresour Technol 100:1622–1627

    Article  CAS  Google Scholar 

  • Kuwahara M, Glenn JK, Morgan MA, Gold MH (1984) Separation and characterization of two extracellular H2O2-dependent oxidases from ligninolytic cultures of Phanerochaete chrysosporium. FEBS Lett 169:247–250

    Article  CAS  Google Scholar 

  • Lee S-E, Lee CG, Kang DH, Lee H-Y, Jung K-H (2012) Preparation of corncob grits as a carrier for immobilizing yeast cells for ethanol production. J Microbiol Biotechnol 22:1673–1680

    Article  CAS  Google Scholar 

  • Linger JG, Vardon DR, Guarnieri MT, Karp EM, Hunsinger GB, Franden MA, Johnson CW, Chupka G, Strathmann TJ, Pienkos PT,. Beckham GT (2014) Lignin valorization through integrated biological funneling and chemical catalysis. PNAS 1-6. doi/10.1073/pnas.1410657111.

  • Lundquist K, Kirk TK (1971) Acid degradation of lignin. Acta Chem Scand 25:889–894

    Article  CAS  Google Scholar 

  • Malaviya P, Rathore VS (2007) Bioremediation of pulp and paper mill effluent by a novel fungal consortium isolated from polluted soil. Bioresour Technol 98:3647–3651

    Article  CAS  Google Scholar 

  • Mishra M, Thakur IS (2010) Isolation and characterization of alkalotolerant bacteria and optimization of process parameters for decolorization and detoxification of pulp and paper mill effluent by Taguchi approach. Biodegradation 21:967–978

    Article  CAS  Google Scholar 

  • Oliveira LPD, Duarte MCT, Ponezi AN, Durrant LR (2009) Purification and partial characterization of manganese peroxidase from Bacillus pumilus and Panibacillus sp. Braz J Microbiol 40:818–826

    Article  Google Scholar 

  • Pakshirajan K, Swaminathan T (2009) Biosorption of copper and cadmium in packed bed columns with live immobilized fungal biomass of Phanerochaete chrysosporium. Appl Biochem Biotechnol 157:159–173

    Article  CAS  Google Scholar 

  • Paliwal R, Rawat AP, Rawat M, Rai JPN (2012) Bioligninolysis: recent updates for biotechnological solution. Appl Biochem Biotechnol 167:1865–1889

    Article  CAS  Google Scholar 

  • Pang Y, Zeng GM, Tang L, Zhang Y, Liu YY, Lei XX, Wu MS, Li Z, Liu C (2011) Cr(VI) reduction by Pseudomonas aeruginosa immobilized in a polyvinyl alcohol/sodium alginate matrix containing multi-walled carbon nanotubes. Bioresour Technol 102:10733–10736

    Article  CAS  Google Scholar 

  • Pathak C, Chopra AK, Srivastava S (2013) Accumulation of heavy metals in Spinacia oleracea irrigated with paper mill effluent and sewage. Environ Monit Assess 185:7343–7352

    Article  CAS  Google Scholar 

  • Pearl A, Benson HK (1940) The determination of lignin in sulfite pulping liquor. Pap Trade J 111:35–36

    CAS  Google Scholar 

  • Philp JC, Balmand S, Hajto E, Bailey MJ, Wiles S, Whiteley AS, Lilley AK, Hajto J, Dunbar SA (2003) Whole cell immobilized biosensors for toxicity assessment of a wastewater treatment plant treating phenolics-containing waste. Anal Chim Acta 487:61–74

    Article  CAS  Google Scholar 

  • Raghukumar C, Rivonkar G (2001) Decolorization of molasses spent wash by the white rot fungus Flavadon flavus, isolated from marine habitat. Appl Microbiol Biotechnol 55:510–514

    Article  CAS  Google Scholar 

  • Raj A, Reddy MMK, Chandra R (2007) Identification of low molecular weight aromatic compounds by gas chromatography-mass spectrometry (GC-MS) from kraft lignin degradation by three Bacillus sp. Int Biodeterior Biodegrad 59:292–296

    Article  CAS  Google Scholar 

  • Saitou N, Nei M (1987) The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425

    CAS  Google Scholar 

  • Salter GJ, Kell DB (1991) New materials and technology for cell immobilization. Curr Opin Biotechnol 2:385–389

    Article  CAS  Google Scholar 

  • Shi K, Chai L, Tang C, Yang Z, Zhang H, Chen R, Chen Y, Zheng Y (2013a) Characterization and genomic analysis of kraft lignin biodegradation by the beta-proteobacterium Cupriavidus basilensis B-8. Biotechnol Biofuels 6:1–14

    Article  CAS  Google Scholar 

  • Shi Y, Chai L, Tang C, Yang Z, Zheng Y, Chen Y, Jing Q (2013b) Biochemical investigation of kraft lignin degradation by Pandoraea sp. B-6 isolated from bamboo slips. Bioprocess Biosyst Eng 36:1957–1965

    Article  CAS  Google Scholar 

  • Singh A, Agrawal SB, Rai JPN, Singh P (2002) Assessment of the pulp and paper mill effluent on growth, yield and nutrient quality of heat (Triticum aestivum L). J Environ Biol 23:283–288

    CAS  Google Scholar 

  • Singhal V, Kumar A, Rai JPN (2005) Bioremediation of pulp and paper mill effluent with Phanerochaete chrysosporium. J Environ Biol 26:525–529

    CAS  Google Scholar 

  • Sipsas V, Kolokythas G, Kourkoutas Y, Plessas S, Nedovic VA, Kanellaki M (2009) Comparative study of batch and continuous multi-stage fixed-bed tower (MFBT) bioreactor during wine-making using freeze-dried immobilized cells. J Food Eng 90:495–503

    Article  CAS  Google Scholar 

  • Tamura K, Dudley J, Nei M, Kumar S (2007) MEGA4: molecular evolutionary genetics analysis (MEGA) software version 4.0. Mol Biol Evol 24:1596–1599

    Article  CAS  Google Scholar 

  • Tayal AK, Das L, Kaur I (1999) Biodegradation of pentachlorophenol (PCP) by white rot fungal strains screened from local sources and its estimation by high-performance liquid chromatography. Biomed Chromatogr 13:220–224

    Article  CAS  Google Scholar 

  • Thompson JD, Higgins DJ, Gibson TJ (1994) CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position specific gap penalties and weight matrix choice. Nucleic Acids Res 22:4673–4680

    Article  CAS  Google Scholar 

  • Vos P, Garrity G, Jones D, Krieg NR, Ludwig W, Rainey FA, Schleifer K-H, Whitman WB (2009) Bergey’s manual of systematic bacteriology. In: Garrity GM (ed), Vol 3, 2nd edn. Springer, New York

  • Xu P, Zeng GM, Huang DL, Lai C, Zhao MH, Wei Z, Li NJ, Huang C, Xie GX (2012) Adsorption of Pb(II) by iron oxide nanoparticles immobilized Phanerochaete chrysosporium: Equilibrium, kinetic, thermodynamic and mechanisms analysis. Chem Eng J 203:423–431

    Article  CAS  Google Scholar 

  • Yang C-F, Lee C-M (2007) Biodegradation and dechlorination of pentachlorophenol with a pentachlorophenol degrading bacterium sphingomonas chlorophenolica. J Environ Eng Manag 17:157–161

    CAS  Google Scholar 

  • Yu J, Yue G, Zhong J, Zhang X, Tan T (2010) Immobilization of Saccharomyces cerevisiae to modified bagasse for ethanol production. Renew Energy 35:1130–1134

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Dr. Ajay Kumar (AIRF, Jawaharlal Nehru University, New Delhi) is thankfully acknowledged for his assistance with the GC/MS analysis. The authors also sincerely appreciate other laboratory facilities received from G.B. Pant University of Agriculture and Technology, Pantnagar.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rashmi Paliwal.

Additional information

Responsible editor: Philippe Garrigues

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Paliwal, R., Uniyal, S. & Rai, J.P.N. Evaluating the potential of immobilized bacterial consortium for black liquor biodegradation. Environ Sci Pollut Res 22, 6842–6853 (2015). https://doi.org/10.1007/s11356-014-3872-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-014-3872-x

Keywords

Navigation