Skip to main content
Log in

UCP2- and non-UCP2-mediated electric current in eukaryotic cells exhibits different properties

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

Using live eukaryotic cells, including cancer cells, MCF-7 and HCT-116, normal hepatocytes and red blood cells in anode and potassium ferricyanide in cathode of MFC could generate bio-based electric current. Electrons and protons generated from the metabolic reaction in both cytosol and mitochondria contributing to the leaking would mediate the generation of electric current. Both resveratrol (RVT) and 2,4-dinitrophenol (DNP) used to induce proton leak in mitochondria were found to promote electric current production in all cells except red blood cells without mitochondria. Proton leak might be important for electric current production by bringing the charge balance in cells to enhance the further electron leak. The induced electric current by RVT can be blocked by Genipin, an inhibitor of UCP2-mediated proton leak, while that induced by DNP cannot. RVT could reduce reactive oxygen species (ROS) level in cells better than that of DNP. In addition, RVT increased mitochondrial membrane potential (MMP), while DNP decreased it. Results highly suggested the existence of at least two types of electric current that showed different properties. They included UCP2-mediated and non-UCP2-mediated electric current. UCP2-mediated electric current exhibited higher reactive oxygen species (ROS) reduction effect per unit electric current production than that of non-UCP2-mediated electric current. Higher UCP2-mediated electric current observed in cancer cells might contribute to the mechanism of drug resistence. Correlation could not be established between electric current production with either ROS and MMP without distinguishing the types of electric current.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

ETC:

Electron transport chain

DNP:

2.4-Dinitrophenol

MFC:

Microbial fel cells

MMP:

Mitochondrial membrane potential

mPTP:

Mitochondrial permeability transition pore

RVT:

Reactive oxygen species (ROS) Resveratrol

VDAC:

Voltage-dependent anion channel

References

  • Antonenko YN, Lomonosov MV, Khailova LS, Knorre DA, Markova OV, Rokitskaya TI, Ilyasova TM, Severina II, Kotova EA, Karavaeva YE, Prikhodko AS, Severin FF, Skulachev VP (2013) Penetrating cations enhance uncoupling activity of anionic protonophores in mitochondria. PLoS One 8(4):e61902

    Article  CAS  Google Scholar 

  • Ash CE, Merry BJ (2011) The molecular basis by which dietary restricted feeding reduces mitochondrial reactive oxygen species generation. Mech Ageing Dev 132(1-2):43–54

    Article  CAS  Google Scholar 

  • Ayyasamy V, Owens KM, Desouki MM, Liang P, Bakin A, Thangaraj K, Buchsbaum DJ, LoBuglio AF, Singh KK (2011) Cellular model of Warburg effect identifies tumor promoting function of UCP2 in breast cancer and its suppression by genipin. PLoS One 6(9):e24792

    Article  CAS  Google Scholar 

  • Baffy G (2010) Uncoupling protein-2 and cancer. Mitochondrion 10:243–252

    Article  CAS  Google Scholar 

  • Baffy G, Derdak Z, Robson SC (2011) Mitochondrial recoupling: a novel therapeutic strategy for cancer? Br J Cancer 105:469–474

    Article  CAS  Google Scholar 

  • Bevilacqua L, Ramsey JJ, Hagopian K, Weindruch R, Harper M (2005) Long-term caloric restriction increases UCP3 content but decreases proton leak and reactive oxygen species production in rat skeletal muscle mitochondria. Am J Physiol Endocrinol Metab 289:E429–E438

    Article  CAS  Google Scholar 

  • Blaikie FH, Brown SE, Samuelsson LM, Brand MD, Smith RA, Murphy MP (2006) Targeting dinitrophenol to mitochondria: limitations to the development of a self-limiting mitochondrial protonophore. Biosci Rep 26(3):231–43

    Article  CAS  Google Scholar 

  • Brand MD (1990) The proton leak across the mitochondrial inner membrane. Biochim Biophys Acta 1018:128–133

    Article  CAS  Google Scholar 

  • Brand MD (2010) Mitochondrial proton and electron leaks essays in biochemistry. Essays Biochem 47:53–67

    Article  Google Scholar 

  • Brand MD, Chien LF, Ainscow EK, Rolfe DF, Porter RK (1994) The causes and functions of mitochondrial proton leak. Biochim Biophys Acta 1187(2):132–9

    Article  CAS  Google Scholar 

  • Brand MD, Affourtit C, Esteves TC, Green K, Lambert AJ, Miwa S, Pakay JL, Parker N (2004) Mitochondrial superoxide production, biological effects, and activation of uncoupling proteins. Free Radic Biol Med 37:755–767

    Article  CAS  Google Scholar 

  • Brutinel E, Gralnick J (2012) Shuttling happens: soluble flavin mediators of extracellular electron transfer in shewanella. Appl Microbiol Biotechnol 93(1):41–48

    Article  Google Scholar 

  • Butler C, Nerenberg R (2010) Performance and microbial ecology of air-cathode microbial fuel cells with layered electrode assemblies. Appl Microbiol Biotechnol 86:1399–1408

    Article  CAS  Google Scholar 

  • Cardoso S, Santos MS, Moreno A, Moreira PI (2013) UCP2 and ANT differently modulate proton-leak in brain mitochondria of long-term hyperglycemic and recurrent hypoglycemic rats. J Bioenerg Biomembr 45(4):397–407

    Article  CAS  Google Scholar 

  • Chen XL, Tang WX, Tang XH, Qin W, Gong M (2014) Downregulation of uncoupling protein-2 by genipin exacerbates diabetes-induced kidney proximal tubular cells apoptosis. Ren Fail 36(8):1298–303

    Article  CAS  Google Scholar 

  • Considine MJ, Goodman M, Echtay KS, Laloi M, Whelan J, Brand MD, Sweetlove LJ (2003) Superoxide stimulates a proton leak in potato mitochondria that is related to the activity of uncoupling protein. J Biol Chem 278(25):22298–302

    Article  CAS  Google Scholar 

  • Dadi PK, Ahmad M, Ahmad Z (2009) Inhibition of ATPase activity of escherichia coli ATP synthase by polyphenols. Int J Biol Macromol 45(1):72–9

    Article  CAS  Google Scholar 

  • Delaney GM, Bennetto HP, Mason JR, Roller SD, Stirling JL, Thurston CF (2008) Electron-transfer coupling in microbial fuel cells. 2. Performance of fuel cells containing selected microorganism-mediator-substrate combinations. J Chem Technol Biogeosci 34:13

    Article  Google Scholar 

  • Derdak Z, Mark NM, Beldi G, Robson SC, Wands JR, Baffy G (2008) The mitochondrial uncoupling protein-2 promotes chemoresistance in cancer cells. Cancer Res 68:2813–2819

    Article  CAS  Google Scholar 

  • Desquiret V, Loiseau D, Jacques C, Douay O, Malthièry Y, Ritz P, Roussel D (2006) Dinitrophenol-induced mitochondrial uncoupling in vivo triggers respiratory adaptation in HepG2 cells. Biochim Biophys Acta 1757(1):21–30

    Article  CAS  Google Scholar 

  • Fraiwan A, Call DF, Seokheun C (2014) Bacterial growth and respiration in laminar flow microbial fuel cells. J Renew Sustaine Energ 6(2):1–9

    Google Scholar 

  • Gledhill JR, Montgomery MG, Leslie AGW, Walker JE (2007) Mechanism of inhibition of bovine F1-ATPase by resveratrol and related polyphenols. Proc Nat Acad Sci USA 104(34):13632–13637

    Article  CAS  Google Scholar 

  • Goldgof M, Xiao C, Chanturiya T, Jou W, Gavrilova O, Reitman ML (2014) The chemical uncoupler 2,4-dinitrophenol (DNP) protects against diet-induced obesity and improves energy homeostasis in mice at thermoneutrality. J Biol Chem 289(28):19341–50

    Article  CAS  Google Scholar 

  • Hoefnagels M (2015) Biology: concepts and investigations, 3rd edn. McGraw-Hill Education, New York

    Google Scholar 

  • Jastroch M, Divakaruni AS, Mookerjee S, Treberg JR, Brand MD (2010) Mitochondrial proton and electron leaks. Essays Biochem 47:53–67

    Article  CAS  Google Scholar 

  • Jin Y, McEwen ML, Nottingham SA, Maragos WF, Dragicevic NB, Sullivan PG, Springer JE (2004) The mitochondrial uncoupling agent 2,4-dinitrophenol improves mitochondrial function, attenuates oxidative damage, and increases white matter sparing in the contused spinal cord. J Neurotrauma 21(10):1396–404

    Article  Google Scholar 

  • Juang DF, Yang PC, Chou HY, Chiu LJ (2011) Effects of microbial species, organic loading and substrate degradation rate on the power generation capability of microbial fuel cells. Biotechnol Lett 33:2147–2160

    Article  CAS  Google Scholar 

  • Kenwood BM, Weaver JL, Bajwa A, Poon IK, Byrne FL, Murrow BA, Calderone JA, Huang L, Divakaruni AS, Tomsig JL, Okabe K, Coleman G, Columbus L, Yan Z, Saucerman JJ, Smith JS, Holmes JW, Lynch KR, Ravichandran KS, Uchiyama S, Santos WL, Rogers GW, Okusa MD, Bayliss DA, Hoehn KL (2013) Identification of a novel mitochondrial uncoupler that does not depolarize the plasma membrane. Mol Metab 3(2):114–23

    Article  Google Scholar 

  • Kim HJ, Park HS, Hyun MS, Chang IS, Kim M, Hong Kim BH (2002) A mediator-less microbial fuel cell using a metal reducing bacterium, Shewanella putrefaciens. Enzym Microb Technol 30(2):145–152

    Article  CAS  Google Scholar 

  • Lesnik K, Liu H (2014) Establishing a core microbiome in acetate-fed microbial fuel cells. Appl Microbiol Biotechnol 98(9):4187–4196

    Article  CAS  Google Scholar 

  • Li LH, Sun YM, Yuan ZH, Kong XY, Li Y (2013) Effect of temperature change on power generation of microbial fuel cell. Environ Technol 34(13/14):1929–1934

    Article  CAS  Google Scholar 

  • Liu S, Jiao X, Wang X, Zhang L (1996) Interaction of electron leak and proton leak in respiratory chain of mitochondria--proton leak induced by superoxide from an electron leak pathway of univalent reduction of oxygen. Sci China C Life Sci 39(2):168–78

    CAS  Google Scholar 

  • Liu S, Wang N, Chen P, Li X, Liu C (2013) Effect of huanglianjiedu tang on fever in rats induced by 2, 4-dinitrophenol. J Tradit Chin Med 33(4):492–9

    Article  Google Scholar 

  • Logan B (2008) In microbial fuel cell. John Wiley & Son, Inc.2008, New Jersey

    Google Scholar 

  • Moukdar F, Robidoux J, Lyght O, Pi J, Daniel KW, Collins S (2009) Reduced antioxidant capacity and diet-induced atherosclerosis in uncoupling protein-2-deficient mice. J Lipid Res 50(1):59–70

    Article  CAS  Google Scholar 

  • Nicholls DG (1997) The non-ohmic proton leak--25 years. Biosci Rep 17(3):251–7

    Article  CAS  Google Scholar 

  • Okuda M, Lee HC, Kumar C, Chance B (1992) Comparison of the effect of a mitochondrial uncoupler, 2,4-dinitrophenol and adrenaline on oxygen radical production in the isolated perfused rat liver. Acta Physiol Scand 145(2):159–68

    Article  CAS  Google Scholar 

  • Panov A, Orynbayeva Z (2013) Bioenergetic and antiapoptotic properties of mitochondria from cultured human prostate cancer cell lines PC-3, DU145 and LNCaP. PLoS One 8(8):e72078

    Article  CAS  Google Scholar 

  • Pant D, Singh A, Van Bogaert G, Irving Olsen S, Singh Nigam P, Diels L, Vanbroekhoven K (2012) Bioelectrochemical systems (BES) for sustainable energy production and product recovery from organic wastes and industrial wastewaters. RSC Adv 2:1248–1263

    Article  CAS  Google Scholar 

  • Parker N, Crichton PG, Vidal-Puig AJ, Brand MD (2009) Uncoupling protein-1 (UCP1) contributes to the basal proton conductance of brown adipose tissue mitochondria. J Bioenerg Biomembr 41(4):335–42

    Article  CAS  Google Scholar 

  • Peng CH, Tseng TH, Liu JY, Hsieh YH, Huang CN, Hsu SP, Wang CJ (2004) Penta-acetyl Geniposeide-induced C6 Glioma cell apoptosis was associated with the activation of protein kinase. Chem Biol Interact 147:287–296

    Article  CAS  Google Scholar 

  • Pfefferle A, Mailloux RJ, Adjeitey CN, Harper ME (2013) Glutathionylation of UCP2 sensitizes drug resistant leukemia cells to chemotherapeutics. Biochim Biophys Acta 1833(1):80–9

    Article  CAS  Google Scholar 

  • Pisciotta JM, Zou Y, Baskakov IV (2011) Role of the photosynthetic electron transfer chain in electrogenic activity of cyanobacteria. Appl Microbiol Biotechnol 91(2):377–385

    Article  CAS  Google Scholar 

  • Poon K, Liang L, Xu C, Wang R (2015) The use of microbial fuel cells to monitor the current production in Qi-deficient liver cells. J Tradit Chin med (accepted)

  • Prabhananda BS, Kombrabail MH (1996) H+, K+, and Na + transport across phospholipid vesicular membrane by the combined action of proton uncoupler 2,4-dinitrophenol and valinomycin. Biochim Biophys Acta 1282(2):193–9

    Article  Google Scholar 

  • Prabhu V, Srivastava P, Yadav N, Amadori M, Schneider A, Seshadri A, Pitarresi J, Scott R, Zhang H, Koochekpour S, Gogada R, Chandra D (2013) Resveratrol depletes mitochondrial DNA and inhibition of autophagy enhances resveratrol-induced caspase activation. Mitochondrion 13(5):493–9

    Article  CAS  Google Scholar 

  • Qu YP, Feng Y, Wang X, Logan BE (2012) Use of a coculture to enable current production by geobacter sulfurreducens. Appl Environ Microbiol 78(9):3484–3487

    Article  CAS  Google Scholar 

  • Quincozes-Santos A, Bobermin LD, Tramontina AC, Wartchow KM, Tagliari B, Souza DO, Wyse AT, Gonçalves CA (2014) Oxidative stress mediated by NMDA, AMPA/KA channels in acute hippocampal slices: neuroprotective effect of resveratrol. Toxicol in Vitro 28(4):544–51

    Article  CAS  Google Scholar 

  • Rieger D, McGowan LT, Cox SF, Pugh PA, Thompson JG (2002) Effect of 2,4-dinitrophenol on the energy metabolism of cattle embryos produced by in vitro fertilization and culture. Reprod Fertil Dev 14(5-6):339–43

    Article  CAS  Google Scholar 

  • Rupprecht A, Sokolenko EA, Beck V, Ninnemann O, Jaburek M, Trimbuch T, Klishin SS, Jezek P, Skulachev V, Pohl EE (2010) Role of the transmembrane potential in the membrane proton leak. Biophys J 98(8):1503–11

    Article  CAS  Google Scholar 

  • Sajana TK, Ghangrekar MM, Mitra A (2013) Effect of pH and distance between electrodes on the performance of a sediment microbial fuel cell. Water Sci Technol 68(3):537–543

    Article  CAS  Google Scholar 

  • Sassi N, Mattarei A, Azzolini M, Szabo’, Paradisi C, Zoratti M, Viale G, Biasutto L (2014) Cytotoxicity of mitochondria-targeted resveratrol derivatives: Interactions with respiratory chain complexes and ATP synthase. Biochimica et Biophysica Acta Date of Electronic Publication: 2014 Jul 2

  • Schlagowski AI, Singh F, Charles AL, Gali Ramamoorthy T, Favret F, Piquard F, Geny B, Zoll J (2014) Mitochondrial uncoupling reduces exercise capacity despite several skeletal muscle metabolic adaptations. J Appl Physiol 116(4):364–75, 1985

    Article  CAS  Google Scholar 

  • Serviddio G, Bellanti F, Romano AD, Tamborra R, Rollo T, Altomare E, Vendemiale G (2007) Bioenergetics in aging: mitochondrial proton leak in aging rat liver, kidney and heart. Redox Rep 12(1):91–5

    Article  CAS  Google Scholar 

  • Sibille B, Ronot X, Filippi C, Nogueira V, Keriel C, Leverve X (1998) 2,4 dinitrophenol-uncoupling effect on delta psi in living hepatocytes depends on reducing-equivalent supply. Cytometry 32(2):102–8

    Article  CAS  Google Scholar 

  • Smedsrød B (2012) Protocol for preparation of mouse liver Kupffer cells and liver sinusoidal endothelial cells [online] 2012 http://www.munin.uit.no/bitstream/handle/10037/4575/article.pdf

  • Smedsrød B, Pertoft H (1985) Preparation of pure hepatocytes and reticuloendothelial cells in high yield from a dingle rate liver by means of percoll centrifugation and selective adherence. J Leukocyte Biol 38:213–230

    Google Scholar 

  • Song H, Guo W, Liu M, Sun J (2013) Performance of microbial fuel cells on removal of metronidazole. Water Sci Technol 68(12):2599–2604

    Article  CAS  Google Scholar 

  • Turrens JF (2003) Mitochondrial formation of reactive oxygen species. J Physiol 552:335–344

    Article  CAS  Google Scholar 

  • Uria N, Sanchez D, Mas R, Sanchez O, Munoz FX, Mas J (2012) Effect of the cathode/anode ratio and the choice of cathode catalyst on the performance of microbial fuel cell transducers for the determination of microbial activity. Sensors Actuators B Chem 170:88–94

    Article  CAS  Google Scholar 

  • Voeikova T, Emel'yanova L, Novikova L, Shakulov R, Sidoruk K, Smirnov I, Il'in V, Soldatov P, Tyurin-Kuz'min A, Smolenskaya T, Debabov V (2013) Intensification of bioelectricity generation in microbial fuel cells using Shewanella oneidensis MR-1 mutants with increased reducing activity. Microbiology 82(4):410–414

    Article  CAS  Google Scholar 

  • Wu XY, Zhou CX, Zhi YF, Chen LY (2012) Progress of microbial fuel cell with microalgae. Environ Sci Technol 35(4):82–86

    CAS  Google Scholar 

  • Xu S, Liu H (2011) New exoelectrogen Citrobacter sp. SX-1 isolated from a microbial fuel cell. J Appl Microbiol 111(5):1108–1115

    Article  CAS  Google Scholar 

  • Xu C, Poon K, Choi MMF, Wang R (2015) Using live algae at anode of microbial fuel cell to generate electricity. Environmental Science and Pollution research (under revision)

  • Yuan Y, Zhou S, Xu N, Zhuang L (2011) Microorganism-immobilized carbon nanoparticle anode for microbial fuel cells based on direct electron transfer. Appl Microbiol Biotechnol 89(5):1629–1635

    Article  CAS  Google Scholar 

  • Zeth K, Thein M (2010) Porins in prokaryotes and eukaryotes: common themes and variations. Biochem J 431(1):13–22

    Article  CAS  Google Scholar 

  • Zhang CY, Parton LE, Ye CP, Krauss S, Shen R, Lin CT, Porco JA Jr, Lowell BB (2006) Genipin inhibits UCP2-mediated proton leak and acutely reverses obesity- and high glucose-induced beta cell dysfunction in isolated pancreatic islets. Cell Metab 3:417–427

    Article  CAS  Google Scholar 

  • Zheng J1, Ramirez VD (2000) Inhibition of mitochondrial proton F0F1-ATPase/ATP synthase by polyphenolic phytochemical. Br J Pharmacol 130(5):1115–23

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Authors would like to thank UIC College Research Grant R201315 for supporting this project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Karen Poon.

Additional information

Responsible editor: Robert Duran

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, R., MoYung, K., Zhang, M. et al. UCP2- and non-UCP2-mediated electric current in eukaryotic cells exhibits different properties. Environ Sci Pollut Res 22, 19618–19631 (2015). https://doi.org/10.1007/s11356-015-5155-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-015-5155-6

Keywords

Navigation