Skip to main content

Advertisement

Log in

The effect of dispersed Petrobaltic oil droplet size on photosynthetically active radiation in marine environment

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

Oil pollution in seawater, primarily visible on sea surface, becomes dispersed as an effect of wave mixing as well as chemical dispersant treatment, and forms spherical oil droplets. In this study, we examined the influence of oil droplet size of highly dispersed Petrobaltic crude on the underwater visible light flux and the inherent optical properties (IOPs) of seawater, including absorption, scattering, backscattering and attenuation coefficients. On the basis of measured data and Mie theory, we calculated the IOPs of dispersed Petrobaltic crude oil in constant concentration, but different log-normal size distributions. We also performed a radiative transfer analysis, in order to evaluate the influence on the downwelling irradiance E d , remote sensing reflectance R rs and diffuse reflectance R, using in situ data from the Baltic Sea. We found that during dispersion, there occurs a boundary size distribution characterized by a peak diameter d 0  = 0.3 μm causing a maximum E d increase of 40 % within 0.5-m depth, and the maximum E d decrease of 100 % at depths below 5 m. Moreover, we showed that the impact of size distribution on the “blue to green” ratios of R rs and R varies from 24 % increase to 27 % decrease at the same crude oil concentration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Notes

  1. Kamila Haule published before as Kamila Rudź.

References

  • Agamy E (2013) Impact of laboratory exposure to light Arabian crude oil, dispersed oil and dispersant on the gills of the juvenile brown spotted grouper (Epinephelus chlorostigma): a histopathological study. Mar Environ Res 86:46–55. doi:10.1016/j.marenvres.2013.02.010

    Article  CAS  Google Scholar 

  • Almeda R, Bona S, Foster CR, Burskey EJ (2014) Dispersant Corexit 9500A and chemically dispersed crude oil decreases the growth rates of meroplanktonic barnacle nauplii (Amphibalanus improvisus) and tornaria larvae (Schizocardium sp.). Mar Environ Res 99:212–217. doi:10.1016/j.marenvres.2014.06.007

    Article  CAS  Google Scholar 

  • Bogucki DJ, Piskozub J, Carr M-E, Spiers GD (2007) Monte Carlo simulation of propagation of a short light beam through turbulent oceanic flow. Opt Express 15:13988–13996. doi:10.1364/OE.15.013988

    Article  CAS  Google Scholar 

  • Bohren CF, Huffman DR (1983) Absorption and scattering of light by small particles. John Wiley & Sons, New York

    Google Scholar 

  • Brekke C, Solberg AHS (2005) Oil spill detection by satellite remote sensing. Remote Sens Environ 95:1–13. doi:10.1016/j.rse.2004.11.015

    Article  Google Scholar 

  • Bricaud A, Claustre H, Ras J, Oubelkheir K (2004) Natural variability of phytoplanktonic absorption in oceanic waters: influence of the size structure of algal populations. J Geophys Res Oceans (1978–2012) 109:C11. doi:10.1029/2004JC002419

    Google Scholar 

  • Conmy RN, Coble PG, Farr J, Wood M, Lee K, Pegau WS, Walsh I, Koch C, Abercrombie M, Miles S, Lewis M, Ryan S, Robinson B, King TA, Kelble CR, Lacoste J (2014) Submersible optical sensors exposed to chemically-dispersed crude oil: wave tank simulations for improved oil spill monitoring. Environ Sci Technol 48:1803–1810. doi:10.1021/es404206y

    Article  CAS  Google Scholar 

  • Cunningham A, Ramage L, McKee D (2013) Relationships between inherent optical properties and the depth of penetration of solar radiation in optically complex coastal waters. J Geophys Res Oceans 118:2310–2317

    Article  Google Scholar 

  • Davies E, McKee D, Bowers D, Graham G, Nimmo-Smith W (2014) Optically significant particle sizes in seawater. Appl Opt 53:1067–1074

    Article  Google Scholar 

  • Drozdowska V, Freda W, Baszanowska E, Rudź K, Darecki M, Heldt JR, Toczek H (2013) Spectral properties of natural and oil polluted Baltic seawater—results of measurements and modelling. Eur Phys J -Spec Top 222:2157–2170. doi:10.1140/epjst/e2013-01992-x

    Article  Google Scholar 

  • Ficek D, Kaczmarek S, Stoń-Egiert S, Woźniak B, Majchrowski R, Dera J (2004) Spectra of light absorption by phytoplankton pigments in the Baltic; conclusions to be drawn from a Gaussian analysis of empirical data. Oceanologia 46:533–555

    Google Scholar 

  • Fingas M, Brown C (2014) Review of oil spill remote sensing. Mar Pollut Bull 83:9–23. doi:10.1016/S1353-2561(98)00023-1

    Article  CAS  Google Scholar 

  • Frantzen M, Hansen BH, Geraudie P, Palerud J, Falk-Petersen I-B, Olsen GH, Camus L (2015) Acute and long-term biological effects of mechanically and chemically dispersed oil on lumpsucker (Cyclopterus lumpus). Mar Environ Res 105:8–19. doi:10.1016/j.marenvres.2014.12.006

    Article  CAS  Google Scholar 

  • Freda W (2014) Comparison of the spectral-angular properties of light scattered in the Baltic Sea and oil emulsions. J Europ Opt Soc Rap Public 9:14017. doi:10.2971/jeos.2014.14017

    Article  Google Scholar 

  • Freda W, Król T, Martynov OV, Shybanov EB, Hapter R (2007) Measurements of scattering function of sea water in southern Baltic. Eur Phys J -Spec Top 144:147–154. doi:10.1140/epjst/e2007-00119-6

    Article  Google Scholar 

  • Frouin R, McPherson J (2012) Estimating photosynthetically available radiation at the ocean surface from GOCI data. Ocean Sci J 47:313–321. doi:10.1007/s12601-012-0030-6

    Article  Google Scholar 

  • Fujiwara A, Hirawake T, Suzuki K, Saitoh S-I (2011) Remote sensing of size structure of phytoplankton communities using optical properties of the Chukchi and Bering Sea shelf region. Biogeosciences 8:3567–3580. doi:10.5194/bg-8-3567-2011

    Article  Google Scholar 

  • Garaba SP, Badewien TH, Braun A, Schulz A-C, Zielinski O (2014) Using ocean colour remote sensing products to estimate turbidity at the Wadden Sea time series station Spiekeroog. J Europ Opt Soc Rap Public 9:14020. doi:10.2971/jeos.2014.14020

    Article  Google Scholar 

  • Gong Y, Zhao X, Cai Z, O’Reilly SE, Hao X, Zhao D (2014) A review of oil, dispersed oil and sediment interactions in the aquatic environment: influence on the fate, transport and remediation of oil spills. Mar Pollut Bull 79:16–33. doi:10.1016/j.marpolbul.2013.12.024

    Article  CAS  Google Scholar 

  • Gordon HR (1992) Diffuse reflectance of the ocean: influence of nonuniform phytoplankton pigment profile. Appl Opt 31:2116–2129

    Article  CAS  Google Scholar 

  • Heintzenberg J (1994) Properties of the log-normal particle size distribution. Aerosol Sci Technol 21:46–48. doi:10.1080/02786829408959695

    Article  Google Scholar 

  • Hieronymi M (2013) Monte Carlo code for the study of the dynamic light field at the wavy atmosphere-ocean interface. J Europ Opt Soc Rap Public 8:13039. doi:10.2971/jeos.2013.13039

    Article  Google Scholar 

  • Hieronymi M, Macke A (2012) On the influence of wind and waves on underwater irradiance fluctuations. Ocean Sci 8:455–471

    Article  Google Scholar 

  • Huot Y, Brown CA, Cullen JJ (2007) Retrieval of phytoplankton biomass from simultaneous inversion of reflectance, the diffuse attenuation coefficient and sun-induced fluorescence in coastal waters. J Geophys Res 112, C06013. doi:10.1029/2006JC003794

    Article  Google Scholar 

  • IOCCG (2006) Remote sensing of inherent optical properties: fundamentals, tests of algorithms, and applications, in reports of the international ocean-colour coordinating group. No. 5, edited by Lee ZP, IOCCG, Dartmouth, Canada

  • Johansen O, Brandvik PJ, Farooq U (2013) Droplet breakup in subsea oil releases—Part 2: predictions of droplet size distributions with and without injection of chemical dispersants. Mar Pollut Bull 73:327–335. doi:10.1016/j.marpolbul.2013.04.012

    Article  CAS  Google Scholar 

  • Jonasz M, Fournier GR (2007) Light scattering by particles in water theoretical and experimental foundations. Academic, San Diego

    Google Scholar 

  • Kelble CR, Ortner PB, Hitchcock GL, Boyer JN (2005) Attenuation of photosynthetically available radiation (par) in Florida bay: potential for light limitation of primary producers. Estuar Coast Shelf Sci 28:560–571. doi:10.1007/BF02696067

    Article  CAS  Google Scholar 

  • Kowalewska G (2001) Algal pigments in Baltic sediments as markers of ecosystem and climate changes. Climate Res 18:89–96. doi:10.3354/cr018089

    Article  Google Scholar 

  • Koyama J, Imakado C, Uno S, Kuroda T, Hara S, Majima T, Shirota H, Anasco NC (2014) Simulated distribution and ecotoxicity-based assessment of chemically-dispersed oil in Tokyo Bay. Mar Pollut Bull 85:487–493. doi:10.1016/j.marpolbul.2014.04.001

    Article  CAS  Google Scholar 

  • Lee ZP, Carder K, Arnone R (2002) Deriving inherent optical properties from water color: a multiband quasi-analytical algorithm for optically deep waters. Appl Optics 41:5755–5772

    Article  Google Scholar 

  • Lessard RR, Demarco G (2000) The significance of oil spill dispersants. Spill Sci Technol Bull 6:59–68

    Article  CAS  Google Scholar 

  • Li Z, Lee K, King T, Boufadel MC, Venosa AD (2009) Evaluating crude oil chemical dispersion efficacy in a flow-through wave tank under regular non-breaking wave and breaking wave conditions. Mar Pollut Bull 58:735–744

    Article  CAS  Google Scholar 

  • Li Z, Lee K, King T, Niu H, Boufadel MC, Venosa AD (2011) Application of entropy analysis of in situ droplet-size spectra in evaluation of oil chemical dispersion efficacy. Mar Pollut Bull 62:2129–2136. doi:10.1016/j.marpolbul.2011.07.012

    Article  CAS  Google Scholar 

  • Lund-Hansen LC (2004) Diffuse attenuation coefficients (PAR) at the estuarine North Sea Baltic Sea transition: time-series, partitioning, absorption, and scattering. Estuar Coast Shelf Sci 61:251–259. doi:10.1016/j.ecss.2004.05.004

    Article  CAS  Google Scholar 

  • Majchrowski R, Ostrowska M (2000) Influence of photo- and chromatic acclimation on pigment composition in the sea. Oceanologia 42:157–175

    Google Scholar 

  • Mobley CD (2011) Fast light calculations for ocean ecosystem and inverse models. Opt Express 19:18927–18944. doi:10.1364/OE.19.018927

    Article  Google Scholar 

  • Mobley CD, Gentili B, Gordon HR, Jin Z, Kattawar GW, Morel A, Reinersman P, Stamnes K, Stavn R (1993) Comparison of numerical models for the computation of underwater light fields. Appl Optics 32(36):7484–7504

    Article  CAS  Google Scholar 

  • Morel A, Gentili B (1991) Diffuse reflectance of oceanic waters: its dependence on sun angle as influenced by the molecular scattering contribution. Appl Opt 30:4427–4438

    Article  CAS  Google Scholar 

  • Morel A, Maritorena S (2001) Bio-optical properties of oceanic waters: a reappraisal. J Geophys Res 106(C4):7163–7180

    Article  Google Scholar 

  • Nepstad R, Stordal IF, Brönner U, Nordtug T, Hansen BH (2015) Modeling filtration of dispersed crude oil droplets by the copepod Calanus finmarchicus. Mar Environ Res 105:1–7. doi:10.1016/j.marenvres.2015.01.004

    Article  CAS  Google Scholar 

  • Ostrowska M (2012) Model of the dependence of the sun-induced chlorophyll a fluorescence quantum yield on the environmental factors in the sea. Opt Express 20:23300–23317. doi:10.1364/OE.20.023300

    Article  CAS  Google Scholar 

  • Otremba Z (2000) The impact on the reflectance in VIS of a type of crude oil film floating on the water surface. Opt Express 7:129–134. doi:10.1364/OE.7.000129

    Article  CAS  Google Scholar 

  • Otremba Z (2007) Oil droplets as light absorbents in seawater. Opt Express 15:8592–8597. doi:10.1364/OE.15.008592

    Article  CAS  Google Scholar 

  • Otremba Z, Piskozub J (2011) Modelling of the optical contrast of an oil film on a sea surface. Opt Express 9:411–416. doi:10.1364/OE.9.000411

    Article  Google Scholar 

  • Piskozub J, Neumann T, Woźniak L (2008) Ocean color remote sensing: choosing the correct depth weighting function. Opt Express 16:14683–14688. doi:10.1364/OE.16.014683

    Article  CAS  Google Scholar 

  • Prince RC, McFarlin KM, Butler JD, Febbo EJ, Wang FCY, Nedwed TJ (2013) The primary biodegradation of dispersed crude oil in the sea. Chemosphere 90:521–526. doi:10.1016/j.chemosphere.2012.08.020

    Article  CAS  Google Scholar 

  • Roleda MY, Wiencke C, Hanelt D, Van De Poll WH, Gruber A (2005) Sensitivity of Laminariales zoospores from Helgoland (North Sea) to ultraviolet and photosynthetically active radiation: implications for depth distribution and seasonal reproduction. Plant Cell Environ 28:466–479. doi:10.1111/j.1365-3040.2005.01288.x

    Article  Google Scholar 

  • Roy S, Llewellyn CA, Egeland ES, Johnsen G (2011) Phytoplankton pigments: characterization, chemotaxonomy and applications in oceanography. Cambridge University Press, New York

    Book  Google Scholar 

  • Rudź K, Darecki M, Toczek H (2013) Modelling the influence of oil content on optical properties of seawater in the Baltic Sea. J Europ Opt Soc Rap Public 8:13063. doi:10.2971/jeos.2013.13063

    Article  Google Scholar 

  • Saeed T, Ali LN, Al-Bloushi A, Al-Hashash H, Al-Bahloul M, Al-Khabbaz A, Al-Khayat A (2011) Effect of environmental factors on photodegradation of polycyclic aromatic hydrocarbons (PAHs) in the water-soluble fraction of Kuwait crude oil in seawater. Mar Environ Res 72:143–150. doi:10.1016/j.marenvres.2011.07.004

    Article  CAS  Google Scholar 

  • Stoń-Egiert J, Majchrowski R, Darecki M, Kosakowska A, Ostrowska M (2012) Influence of underwater light fields on pigment characteristics in the Baltic Sea—results of statistical analysis. Oceanologia 54:7–27. doi:10.5697/oc.54-1.007

    Article  Google Scholar 

  • Stramski D, Tegowski J (2001) Effects of intermittent entrainment of air bubbles by breaking wind waves on ocean reflectance and underwater light field. J Geophys Res Oceans 106:31345–31360

    Article  Google Scholar 

  • Ulloa O, Sathyendranath S, Platt T (1994) Effect of the particle-size distribution on the backscattering ratio in seawater. Appl Opt 33:7070–7077

    Article  CAS  Google Scholar 

  • Wang W, Zheng Y, Lee K (2013) Chemical dispersion of oil with mineral fines in a low temperature environment. Mar Pollut Bull 72:205–212. doi:10.1016/j.marpolbul.2013.03.042

    Article  CAS  Google Scholar 

  • Wozniak SB, Stramski D (2004) Modeling the optical properties of mineral particles suspended in seawater and their influence on ocean reflectance and chlorophyll estimation from remote sensing algorithms. Appl Opt 43:3489–3503

    Article  CAS  Google Scholar 

  • Zhang X, Lewis M, Johnson B (1998) Influence of bubbles on scattering of light in the ocean. Appl Opt 37:6525–6536

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Kamila Haule was supported by the grant no. UMO-2012/05/N/ST 10/03707 while Włodzimierz Freda was supported by the grant no. UMO-2012/07/D/ST 10/02865, both funded by the National Science Centre (NCN) of Poland. Additionally, this paper was partially supported by the Academic Computer Centre in Gdańsk. Moreover, the authors would like to thank Sławomir Sagan, Mirosław Darecki, Monika Woźniak, Jacek Piskozub and Henryk Toczek for making optical data available as well as for their advice and valuable comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kamila Haule.

Additional information

Responsible editor: Philippe Garrigues

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Haule, K., Freda, W. The effect of dispersed Petrobaltic oil droplet size on photosynthetically active radiation in marine environment. Environ Sci Pollut Res 23, 6506–6516 (2016). https://doi.org/10.1007/s11356-015-5886-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-015-5886-4

Keywords

Navigation