Skip to main content

Advertisement

Log in

Quantification of health risks in Ecuadorian population due to dietary ingestion of arsenic in rice

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

In Ecuador alone, 500,000 people in rural areas are estimated to have been exposed to high concentrations of As from water and food, but no quantitative evaluation of health risk has yet been made. The present study quantifies exposure and health risk for the Ecuadorian population from the ingestion of arsenic in white rice. Estimated exposure is correlated with published data on tap water quality and biomarkers of exposure for the population of two towns in the metropolitan area of Quito. Estimated daily intake (EDI) of arsenic for infants living in urban areas of Ecuador is around four times that of European infants, being equal for those livings in rural areas. EDI for the population as a whole is almost twice that of Europe, but between a half and a third of that of Brazil, Bangladesh, and India. Estimated excess lifetime risk (ELTR) for adults is 3 per 10,000, while for infants varies between 10 per 10,000 in rural areas and 20 per 10,000 in urban areas. Future research on arsenic impacts on human health in Ecuador should consider in particular poor populations living in regions where environmental arsenic concentrations are highest, including cross-sectional and longitudinal epidemiologic studies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • AMA (n.d.) Current procedural terminology (CPT) code 82175, chemistry procedures. American Medical Association, Salt Lake City

  • Antoine JMR, Hoo Fung LA, Grant CN, Dennis HT, Lalor GC (2012) Dietary intake of minerals and trace elements in rice on the Jamaican market. J Food Compos Anal 26:111–121. https://doi.org/10.1016/j.jfca.2012.01.003

    Article  CAS  Google Scholar 

  • Ayerza A (1917) Arsenicismo regional endémico (keratodermia y melanodermia combinadas). Bol Acad Med 2–3:11–24

    Google Scholar 

  • Ayerza A (1918) Arsenicismo regional endémico (keratodermia y melanodermia combinadas) (continuación). Bol Acad Med. 1:1–24

    Google Scholar 

  • Barker DJP (2007) The origins of the developmental origins theory. J Intern Med 261:412–417. https://doi.org/10.1111/j.1365-2796.2007.01809.x

    Article  CAS  Google Scholar 

  • Batista BL, Souza JMO, De Souza SS, Barbosa F (2011) Speciation of arsenic in rice and estimation of daily intake of different arsenic species by Brazilians through rice consumption. J Hazard Mater 191:342–348. https://doi.org/10.1016/j.jhazmat.2011.04.087

    Article  CAS  Google Scholar 

  • Borja IM, Williams GW (2004) The economic structure of Ecuador’s rice and corn markets. International research report No. IM-04-04. Texas Agricultural Market Research Center, Department of Agricultural Economics, Texas A&M University, Texas

  • Bundschuh J, García ME, Birkle P, Cumbal LH, Bhattacharya P, Matschullat J (2009) Occurrence, health effects and remediation of arsenic in groundwaters of Latin America. In: Bundschuh J, Armienta MA, Birkle P, Bhattacharya P, Matschullat J, Mukherjee AB (eds) Natural Arsenic in Groundwater of Latin America. CRC Press/Balkema Publisher, Leiden, pp 3–15

    Google Scholar 

  • Bundschuh J, Litter MI, Nicolli HB, Hoinkis J, Bhattachraya P (2010) Identifying occurrences of groundwater arsenic in Latin America: A continent-wide problem and challenge. In: Jean J-S, Bundschuh J, Bhattacharya P (eds) Arsenic in Geosphere and Human Diseases; Arsenic 2010: Proceedings of the Third International Congress on Arsenic in the Environment (As-2010). Taylor & Francis Group, London, pp 512–516

    Google Scholar 

  • Bundschuh J, Litter MI, Parvez F, Román-Ross G, Nicolli HB, Jean JS, Liu CW, López D, Armienta MA, Guilherme LRG, Cuevas AG, Cornejo L, Cumbal L, Toujaguez R (2012) One century of arsenic exposure in Latin America: a review of history and occurrence from 14 countries. Sci Total Environ 429:2–35. https://doi.org/10.1016/j.scitotenv.2011.06.024

    Article  CAS  Google Scholar 

  • Burmaster DE, Wilson AM (1996) An introduction to second-order random variables in human health risk assessment. Hum Ecol Risk Assess 2:892–919

    Article  Google Scholar 

  • CAC (2014) Codex alimentarius commission, thirty-seventh session, 14-18 July 2014. Joint FAO/WHO Food Standards Programme, Geneva

  • Carbonell-Barrachina A, Wu X, Ramírez-Gandolfo A, Norton GJ, Burló F, Deacon C, Meharg AA (2012) Inorganic arsenic contents in rice-based infant foods from Spain, UK, China and USA. Env. Poll. 163:77–83. https://doi.org/10.1016/j.envpol.2011.12.036

    Article  CAS  Google Scholar 

  • Celik I, Gallicchio L, Boyd K, Lam TK, Matanoski G, Tao X, Shiels M, Hammond E, Chen L, Robinson KA, Caulfield LE, Herman JG, Guallar E, Alberg AJ (2008) Arsenic in drinking water and lung cancer: A systematic review. Environ Res 108:48–55. https://doi.org/10.1016/j.envres.2008.04.001

    Article  CAS  Google Scholar 

  • Cottingham KL, Karimi R, Gruber JF, Zens MS, Sayarath V, Folt CL, Punshon T, Morris JS, Karagas MR (2013) Diet and toenail arsenic concentrations in a New Hampshire population with arsenic-containing water. Nutr J 12:149. https://doi.org/10.1186/1475-2891-12-149

    Article  Google Scholar 

  • Cumbal L, Bundschuh J, Aguirre V, Murgueitio E, Tipán I, Chavez C (2009) The origin of arsenic in waters and sediments from Papallacta lake in Ecuador. In: Bundschuh J, Armienta MA, Birkle P, Bhattacharya P, Mat-schullat J, Mukherjee AB (eds) Natural Arsenic in Groundwater of Latin America. CRC Press/Balkema Publisher, Leiden, pp 81–90

    Google Scholar 

  • Cumbal L, Vallejo P, Rodriguez B, Lopez D (2010) Arsenic in geothermal sources at the north-central Andean region of Ecuador: Concentrations and mechanisms of mobility. Environ Earth Sci 61:299–310. https://doi.org/10.1007/s12665-009-0343-7

    Article  CAS  Google Scholar 

  • de Esparza MLC (2009) The presence of arsenic in drinking water in Latin America and its effect on public health. In: Bundschuh J, Armienta MA, Birkle P, Bhattacharya P, Matschullat J, Mukherjee AB (eds) Natural Arsenic in Groundwater of Latin America. CRC Press LLC, London, pp 17–29

    Google Scholar 

  • Del Razo LM, Garcia-Vargas GG, Garcia-Salcedo J, Sanmiguel MF, Rivera M, Hernandez MC, Cebrian ME (2002) Arsenic levels in cooked food and assessment of adult dietary intake of arsenic in the Region Lagunera. Mexico Food Chem Toxicol 40:1423–1431. https://doi.org/10.1016/S0278-6915(02)00074-1

    Article  Google Scholar 

  • EFSA (2009) Scientific opinion on arsenic in food. EFSA J 7:1351–1550. https://doi.org/10.2903/j.efsa.2009.1351

    Article  Google Scholar 

  • EFSA (2012) Guidance on the use of probabilistic methodology for modelling dietary exposure to pesticide residues. EFSA J 10:1–95. https://doi.org/10.2903/j.efsa.2012.2839

    Google Scholar 

  • EFSA (2014) Dietary exposure to inorganic arsenic in the European population. EFSA J 12:3597. https://doi.org/10.2903/j.efsa.2014.3597

    Google Scholar 

  • Ferreccio C, Sancha AM (2006) Arsenic exposure and its impact on health in Chile. J Health Popul Nutr 24:164–175. https://doi.org/10.2307/23499354

    Google Scholar 

  • Ferreccio C, Gonzalez C, Milosavjlevic V, Marshall G, Sancha AM, Smith AH (2000) Lung cancer and arsenic concentrations in drinking water in Chile. Epidemiology 11:673–679. https://doi.org/10.1097/00001648-200011000-00010

    Article  CAS  Google Scholar 

  • Ferreira-Salazar C, García-García K, Macías-Leiva L, Pérez-Avellaneda A, Tomsich C (2013) Mujeres y hombres del Ecuador en Cifras III serie información estratégica. Instituto Nacional de Estadística y Censos (INEC), Quito

  • Flores DVT (2015) Determinacion de la viabilidad de la aplicación de la soberania alimentaria en el Ecuador: un analisis desde la perspectiva de la produccion, comercio y consumo de alimentos a nivel nacional. Pontificia Universidad Católica del Ecuador. Facultad de Ciencias Humanas Escuela de Ciencias Geografícas, Quito. https://doi.org/10.1017/CBO9781107415324.004

    Google Scholar 

  • Fontcuberta M, Calderon J, Villalbí JR, Centrich F, Portaña S, Espelt A, Duran J, Nebot M (2011) Total and inorganic arsenic in marketed food and associated health risks for the Catalan (Spain) population. J Agric Food Chem 59:10013–10022. https://doi.org/10.1021/jf2013502

    Article  CAS  Google Scholar 

  • Freire W, Belmont P, Gómez L, Mendieta M, Monge R, Piñeiros P, Ramírez-Luzuriaga M, Romero N, Sáenz K, Silva-Jaramillo K (2014) Tomo I: Encuesta Nacional de Salud y Nutrición de la población ecuatoriana de cero a 59 años. Ministerio de Salud Pública/Instituto Nacional de Estadísticas y Censos, Quito

    Google Scholar 

  • Goyenechea M (1917) Sobre la nueva enfermedad descubierta en Bell-Ville. Rev Med Rosario 7:485

    Google Scholar 

  • Heck JE, Nieves JW, Chen Y, Parvez F, Brandt-Rauf PW, Graziano JH, Slavkovich V, Howe GR, Ahsan H (2009) Dietary intake of methionine, cysteine, and protein and urinary arsenic excretion In Bangladesh. Environ Health Perspect 117:99–104. https://doi.org/10.1289/ehp.11589

    Article  CAS  Google Scholar 

  • Hinwood AL, Sim MR, Jolley D, de Klerk N, Bastone EB, Gerostamoulos J, Drummer OH (2003) Hair and toenail arsenic concentrations of residents living in areas with high environmental arsenic concentrations. Environ Health Perspect 111:187–193. https://doi.org/10.1289/ehp.5455

    Article  CAS  Google Scholar 

  • Hopenhayn-Rich C, Biggs ML, Smith AH (1998) Lung and kidney cancer mortality associated with arsenic in drinking water in Cordoba, Argentina. Int J Epidemiol 27:561–569. https://doi.org/10.1093/ije/27.4.561

    Article  CAS  Google Scholar 

  • Huang J-H, Ilgen G, Fecher P (2010) Quantitative chemical extraction for arsenic speciation in rice grains. J Anal At Spectrom 25:800–802. https://doi.org/10.1039/c002306j

    Article  CAS  Google Scholar 

  • INEC (2013) Anuario estadístico de Ecuador 2013 - Analysis. Instituto Nacional de Estadística y Censos (INEC), Quito

  • INEC (2014a) Encuesta Nacional de Salud, Salud Reproductiva y Nutrición (ENSANUT) [WWW Document]. Inst. Nac. Estad. y Censos. http//www.ecuadorencifras.gob.ec/category/ensanut (accessed 02/05/2016)

  • INEC (2014b) Compendium Estadistico 2014. Proyección población según grupos etarios por sexo a nivel nacional, periodo 2010–2020. Instituto Nacional de Estadística y Censos (INEC), Quito

    Google Scholar 

  • Jiin-Shuh J, Bundschuh J, Chen C-J, Guo H-R, Liu C-W, Lin T-F, Chen Y-H (2010) The Taiwan Crisis: a showcase of the global arsenic problem. CRC Press LLC, Boca Raton

    Google Scholar 

  • Kippler M, Skröder H, Rahman SM, Tofail F, Vahter M (2016) Elevated childhood exposure to arsenic despite reduced drinking water concentrations—a longitudinal cohort study in rural Bangladesh. Environ Int 86:119–125. https://doi.org/10.1016/j.envint.2015.10.017

    Article  CAS  Google Scholar 

  • Kuo CC, Weaver V, Fadrowski JJ, Lin YS, Guallar E, Navas-Acien A (2015) Arsenic exposure, hyperuricemia, and gout in US adults. Environ Int 76:32–40. https://doi.org/10.1016/j.envint.2014.11.015

    Article  CAS  Google Scholar 

  • Lepori ECV (2015) Hidroarsenicismo crónico regional endémico en Argentina. Acta Bioquím Clín Latinoam 49:83–104

    Google Scholar 

  • Li R, Ago Y, Liu W, Mitani N, Feldmann J, McGrath SP, Ma JF, Zhao F-J (2009) The rice aquaporin Lsi1 mediates uptake of methylated arsenic species. Plant Physiol 150:2071–2080. https://doi.org/10.1104/pp.109.140350

    Article  CAS  Google Scholar 

  • Li G, Sun G-X, Williams PN, Nunes L, Zhu Y-G (2011) Inorganic arsenic in Chinese food and its cancer risk. Environ Int 37:1219–1225. https://doi.org/10.1016/j.envint.2011.05.007

    Article  CAS  Google Scholar 

  • López GEL (2007) Auditoría ambiental a la calidad del agua de consumo humano de las poblaciones de Guayllabamba y Tumbaco, de responsabilidad de la empremetropolitana de alcantarillado y agua potable de Quito, EMAAP-Q. Contraloria General del Estado, Quito http://www.environmental-auditing.org/tabid/126/CountryId/413/Default.aspx

    Google Scholar 

  • MAGAP (2013) Información de insumos, producción, industrialización, comercialización, consumo y descarga de la información del Arroz, Cacao, Caña de Azúcar, Maíz, Palma, Papa y Café. Ministerio de Agricultura, Ganadería, Acuacultura y Pesca, Quito

  • Maharjan M, Watanabe C, Ahmad SA, Umezaki M, Ohtsuka R (2007) Mutual interaction between nutritional status and chronic arsenic toxicity due to groundwater contamination in an area of Terai, lowland Nepal. J Epidemiol Community Health 61:389–394. https://doi.org/10.1136/jech.2005.045062

    Article  Google Scholar 

  • McClintock TR, Chen Y, Bundschuh J, Oliver JT, Navoni J, Olmos V, Lepori EV, Ahsan H, Parvez F (2012) Arsenic exposure in Latin America: Biomarkers, risk assessments and related health effects. Sci Total Environ 429:76–91. https://doi.org/10.1016/j.scitotenv.2011.08.051

    Article  CAS  Google Scholar 

  • Meharg AA, Zhao F-J (2012) Arsenic & Rice. Springer, Berlin

    Book  Google Scholar 

  • Meharg AA, Williams PN, Adomako E, Lawgali YY, Deacon C, Villada A, Cambell RCJ, Sun G, Zhu Y-G, Feldmann J, Raab A, Zhao F-J, Islam R, Hossain S, Yanai J (2009) Geographical variation in total and inorganic arsenic content of Polished (white) rice. Environ Sci Technol 43:1612–1617. https://doi.org/10.1021/es802612a

    Article  CAS  Google Scholar 

  • Meliker JR, Franzblau A, Slotnick MJ, Nriagu JO (2006) Major contributors to inorganic arsenic intake in southeastern Michigan. Int J Hyg Environ Health 209:399–411. https://doi.org/10.1016/j.ijheh.2006.03.006

    Article  CAS  Google Scholar 

  • Milton AH, Shahidullah SM, Smith W, Hossain KS, Hasan Z, Ahmed KT (2010) Association between chronic arsenic exposure and nutritional status among the women of child bearing age: a case-control study in Bangladesh. Int J Environ Res Public Health 7:2811–2821. https://doi.org/10.3390/ijerph7072811

    Article  CAS  Google Scholar 

  • Mukherjee A, Fryar AE, O’Shea M (2009) Major occurrences of elevated arsenic in groundwater and other natural waters. In: Henke KR (ed) Environmental Chemistry, Health Threats and Waste Treatment. John Wiley & Sons, Ltd., West Sussex, pp 303–350

    Google Scholar 

  • Newbold R, Heindel JJ (2009) Developmental origins of health and disease: the importance of environmental exposures. In: Newnham JP, Ross MG (eds) Early Life Origins of Human Health and Disease. Karger Publishers AG, Basel, pp 42–51

    Chapter  Google Scholar 

  • Nordstrom DK (2002) Worldwide Occurrences of Arsenic in Ground Water. Science (80-. ) 296:2143–2145. https://doi.org/10.1126/science.1072375

    Article  CAS  Google Scholar 

  • Nriagu JO, Bhattacharya P, Mukherjee AB, Bundschuh J, Zevenhoven R, Loeppert RH (2007) Arsenic in soil and groundwater: an overview. In: Bhattacharya P, Mukherjee AB, Bundschuh J, Zevenhoven R, Loeppert RH (eds) Arsenic in soil and groundwater environment: biogeochemical interactions, health effects and remediation. Elsevier, Amsterdam, pp 3–60. https://doi.org/10.1016/S1875-1121(06)09001-8

  • Ochoa-Avilés A, Verstraeten R, Lachat C, Andrade S, Camp JV, Donoso S, Kolsteren P (2014) Dietary intake practices associated with cardiovascular risk in urban and rural Ecuadorian adolescents: a cross-sectional study. BMC Public Health 14:939

    Article  Google Scholar 

  • Otero XL, Tierra W, Atiaga O, Guanoluisa D, Nunes LM, Ferreira TO, Ruales J (2016) Arsenic in rice agrosystems (water, soil and rice plants) in Guayas and Los Ríos provinces. Ecuador Sci Total Environ 573:778–787. https://doi.org/10.1016/j.scitotenv.2016.08.162

    Article  CAS  Google Scholar 

  • Peng Q, Nunes LM, Greenfield BK, Dang F, Zhong H (2015) Are Chinese consumers at risk due to exposure to metals in crayfish? A bioaccessibility-adjusted probabilistic risk assessment. Environ Int Int Rev 88:261–268. https://doi.org/10.1016/j.envint.2015.12.035

    Article  Google Scholar 

  • Pinto E, Almeida A, Ferreira IMPLVO (2016) Essential and non-essential/toxic elements in rice available in the Portuguese and Spanish markets. J Food Compos Anal 48:81–87. https://doi.org/10.1016/j.jfca.2016.02.008

    Article  CAS  Google Scholar 

  • Prunés L (1939) Cáncer de los salitreros. Rev. Argentina Dermatosiflología 23:373–385

    Google Scholar 

  • Prunés L, Hevia H (1945) Primeros casos de poiquiloder- matomiositis. Rev Med Chil 73:395–402

    Google Scholar 

  • Ravenscroft P, Brammer H, Richards K (2009) Arsenic pollution: a global synthesis. Wiley-Blackwell, Chichester

    Book  Google Scholar 

  • Rowell DL (1994) Soil Science: methods and applications. Longman Scientific & Technical, Longman Group, Essex

    Google Scholar 

  • Saad A, Hassanien MA (2001) Assessment of arsenic level in the hair of the nonoccupational Egyptian population: pilot study. Environ Int 27:471–478. https://doi.org/10.1016/S0160-4120(01)00102-7

    Article  CAS  Google Scholar 

  • Saavedra DR, Matamala MAC, Feldman MF, Valenzuela AF, Zemelman VD (2012) Luis Prunés Risetti: un gran maestro de la dermatología chilena: su biografía y archivo fotográfico. Rev Chil Dermatol 29:152–159

    Google Scholar 

  • Seki Y, Williams L, Vuguin PM, Charron MJ (2012) Minireview: Epigenic programming of diabetes and obesity: animal models. Endocrinology 153:1031–1038. https://doi.org/10.1210/en.2011

    Article  CAS  Google Scholar 

  • Smedley PL, Kinniburgh DG (2002) A review of the source, behaviour and distribution of arsenic in natural waters. Appl Geochem 17:517–568. https://doi.org/10.1016/S0883-2927(02)00018-5

    Article  CAS  Google Scholar 

  • Smith AH, Goycolea M, Haque R, Biggs ML (1998) Marked increase in bladder and lung cancer mortality in a region of Northern Chile due to arsenic in drinking water. Am J Epidemiol 147:660–669

    Article  CAS  Google Scholar 

  • Smith M, Lee N, Heitkemper R, DeNicola DT, Cafferky K, Haque A, Henderson AK (2006) Inorganic arsenic in cooked rice and vegetables from Bangladeshi households. Sci Total Environ 370:294–301. https://doi.org/10.1016/j.scitotenv.2006.06.010

    Article  CAS  Google Scholar 

  • USEPA (1989) Risk assessment guidance for Superfund. Volume I - Human health evaluation manual (Part A). United States Environmental Protection Agency, Washington, DC

  • USEPA (1995) Chemical assessment summary: Arsenic, inorganic. U.S. Environmental Protection Agency, Washington, D. C.

    Google Scholar 

  • USEPA (2008) Child-specific exposure factors handbook. U.S. Environmental Protection Agency, Washington, D. C.

    Google Scholar 

  • USEPA (2011) Exposure factors handbook: 2011 Edition. U.S. Environmental Protection Agency, Washington D. C.

    Google Scholar 

  • Vahter ME (2007) Interactions between arsenic-induced toxicity and nutrition in early life. J Nutr 137:2798–2804

    CAS  Google Scholar 

  • Vahter M, Marafante E (1987) Effects of low dietary intake of methionine, choline or proteins on the biotransformation of arsenite in the rabbit. Toxicol Lett 37:41–46

    Article  CAS  Google Scholar 

  • Wailes EJ, Chavez EC (2014) Update for International Rice Outlook International Rice Baseline Projections, 2013–2023. Arkansas Global Rice Economics s Program. Department of Agricultural Economics and Agribusiness Division of Agriculture, Fayetteville

    Google Scholar 

  • Welch AH, Stollenwerk KG (2003) Arsenic in ground water: geochemistry and occurrence. Kluwer Academic Publishers, Dordrecht

    Book  Google Scholar 

  • WHO (2006) Principles for evaluating health risks in children associated with exposure to chemicals - Environmental Health Criteria 237. Switzerland, Geneva

    Google Scholar 

  • WHO (2011) Arsenic in drinking-water - background document for development of WHO guidelines for drinking-water quality. Report WHO/SDE/WSH/03.04/75/Rev/1 arsenic. World Health Organization, Geneva

  • WHO (2016) GEMS/Food contaminants database [WWW Document]. World Heal. Organ. Geneva, Switzerland. (https://extranet.who.int/gemsfood/)

  • Williams PN, Villada A, Deacon C, Raab A, Figuerola J, Green AJ, Feldmann J, Meharg AA (2007) Greatly enhanced arsenic shoot assimilation in rice leads to elevated grain levels compared to wheat and barley. Environ Sci Technol 41:6854–6859. https://doi.org/10.1021/es070627i

    Article  CAS  Google Scholar 

  • Xue J, Zartarian V, Wang SW, Liu SV, Georgopoulos P (2010) Probabilistic modeling of dietary arsenic exposure and dose and evaluation with 2003–2004 NHANES data. Environ Health Perspect 118:345–350. https://doi.org/10.1289/ehp.0901205

    Article  CAS  Google Scholar 

  • Zhao F-J, Mcgrath SP, Meharg AA (2010) Arsenic as a food chain contaminant: mechanisms of plant uptake and metabolism and mitigation strategies. Annu Rev Plant Biol 61:535–559. https://doi.org/10.1146/annurev-arplant-042809-112152

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank Dra. J. Ruales, D. Guanoluisa, W. Tierra, and M. Carrillo, for their invaluable collaboration during the fieldwork and María José Santiso, for the assistance with laboratory work. XLOP is grateful for the financial support from the Proyecto PROMETEO (SENESCYT, Ecuador).

Funding

This work is part of a research Project entitled “Bioavailability of arsenic and toxic metals in rice fields in Ecuador and their effects on human health,” funded by the Escuela Politécnica Nacional (PIJ-15-10), CRETUS strategic group (AGRUP2015/02), and Proyecto PROMETEO (SENESCYT, Ecuador).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luís Miguel Nunes.

Additional information

Responsible editor: Philippe Garrigues

Electronic supplementary material

ESM 1

(DOCX 197 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nunes, L.M., Otero, X. Quantification of health risks in Ecuadorian population due to dietary ingestion of arsenic in rice. Environ Sci Pollut Res 24, 27457–27468 (2017). https://doi.org/10.1007/s11356-017-0265-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-017-0265-y

Keywords

Navigation