Skip to main content
Log in

Characteristics of polycyclic aromatic hydrocarbons in PM2.5 emitted from different cooking activities in China

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

Nineteen polycyclic aromatic hydrocarbons (PAHs) in PM2.5 emitted from five different cooking activities were characterized, and their influencing factors were determined. The total quantified particle-bounded PAH concentrations (ΣPAHs) in the airs from the cooking activities were 4.2–36.5-fold higher than those in corresponding backgrounds. The highest ΣPAHs were seen in cafeteria frying (783 ± 499 ng/m3), followed by meat roasting (420 ± 191 ng/m3), fish roasting (210 ± 105 ng/m3), snack-street boiling (202 ± 230 ng/m3), and cafeteria boiling (150 ± 65 ng/m3). The main influencing factors on the PAH emissions were cooking methods, fat contents in raw materials, and oil consumptions. Four- to six-ringed PAHs had the highest contributions to the ΣPAHs (avg. 87.5%). Diagnostic ratios of individual PAH were similar between the two charbroiling and other three conventional Chinese cooking methods, respectively, demonstrating the dominance of cooking methods in the PAH emissions. Remarkably high benzo(b)fluoranthene/benzo(k)fluoranthene (BbF/BkF) ratio (8.31) was seen in the snack-street boiling, attributed to the coal combustion as cooking fuel. Both fluoranthene/(fluoranthene + pyrene) [FLT/(FLT + PYR)] and benzo(a)anthracene/(benzo(a)anthracene + chrysene) [BaA/(BaA + CHR)] ratios were higher for the oil-based cooking than those from the water-based ones. In addition, two ratios of indeno(1,2,3-cd)pyrene/(indeno(1,2,3-cd)pyrene + benzo(g,h,i)perylene) [IPY/(IPY + BPE)] and benzo(a)pyrene/(benzo(a)pyrene + benzo(g,h,i)perylene) [BaP/(BaP + BPE)] were higher for two charbroiling than the three conventional Chinese cooking methods. The characterization work in this study is particularly important since cooking is a potential contributor of atmospheric PAHs in urban China. Carcinogenic potencies of PAHs were assessed by comparison with the air quality guideline and health risk estimation. The BaP and BaP equivalent were higher for the oil-based than the water-based cooking activities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Abdullahi KL, Delgado-Saborit JM, Harrison RM (2013) Emissions and indoor concentrations of particulate matter and its specific chemical components from cooking: a review. Atmos Environ 71:260–294

    Article  CAS  Google Scholar 

  • Akyüz M, Cabuk H (2010) Gas-particle partitioning and seasonal variation of polycyclic aromatic hydrocarbons in the atmosphere of Zonguldak, Turkey. Sci Total Environ 408:5550–5558

    Article  Google Scholar 

  • Allan JD (2009) Contributions from transport, solid fuel burning and cooking to primary organic aerosols in two UK cities. Atmos Chem Phys 9:749–767

    Article  Google Scholar 

  • Alves CA, Vicente AM, Custódio D, Cerqueira M, Nunes T, Pio C, Lucarelli F, Calzolai G, Nava S, Diapouli E, Eleftheriadis K, Querol X, Musa Bandowe BA (2017) Polycyclic aromatic hydrocarbons and their derivatives (nitro-PAHs, oxygenated PAHs, and azaarenes) in PM2.5 from southern European cities. Sci Total Environ 595:494–504

    Article  CAS  Google Scholar 

  • Amouei TM, Gorjinezhad S, Unluevcek HS, Hopke PK (2017) Review of factors impacting emission/concentration of cooking generated particulate matter. Sci Total Environ 586:1046–1056

    Article  Google Scholar 

  • Barbosa JM, Ré-Poppi N, Santiago-Silva M (2006) Polycyclic aromatic hydrocarbons from wood pyrolysis in charcoal production furnaces. Environ Res 101:304–311

    Article  CAS  Google Scholar 

  • Brinkman GL, Schauer MJJ, Shafer MM, Hannigan MP (2009) Source identification of personal exposure to fine particulate matter using organic tracers. Atmos Environ 43:1972–1981

    Article  CAS  Google Scholar 

  • Buonanno G, Johnson G, Morawska L, Stabile L (2011) Volatility characterization of cooking-generated aerosol particles. Aerosol Sci Technol 45:1069–1077

    Article  CAS  Google Scholar 

  • Cao JJ, Lee SC, Ho KF, Zhang XY, Zou SC, Fung K, Chow JC, Watson JG (2003) Characteristics of carbonaceous aerosol in Pearl River Delta region, China during 2001 winter period. Atmos Environ 37:1451–1460

    Article  CAS  Google Scholar 

  • Chen BH, Chen YC (2015) Formation of polycyclic aromatic hydrocarbons in the smoke from heated model lipids and food lipids. J Agr Food Chem 49:5238–5243

    Article  Google Scholar 

  • Chen JW, Wang SL, Hsieh DP, Yang HH, Lee HL (2012) Carcinogenic potencies of polycyclic aromatic hydrocarbons for back-door neighbors of restaurants with cooking emissions. Sci Total Environ, s 417–418:68–75

    Article  Google Scholar 

  • Chiang TA, Wu PF, Wang LF, Lee H, Lee CH, Ko YC (1997) Mutagenicity and polycyclic aromatic hydrocarbon content of fumes from heated cooking oils produced in Taiwan. Mutat Res-Fund Mol M 381:157–161

    Article  CAS  Google Scholar 

  • Chiang TA, Wu PF, Ko YC (1999) Identification of carcinogens in cooking oil fumes. Environ Res 81:18–22

    Article  CAS  Google Scholar 

  • Chow JC, Watson JG, Pritchett LC, Pierson WR, Frazier CA, Purcell RG (1993) The DRI thermal/optical reflectance carbon analysis system: description, evaluation and applications in US air quality studies. Atmos Environ Part A General Topics 27:1185–1201

    Article  Google Scholar 

  • Farhadian A, Jinap S, Abas F, Sakar ZI (2010) Determination of polycyclic aromatic hydrocarbons in grilled meat. Food Control 21:606–610

    Article  CAS  Google Scholar 

  • Harrison RM, Yin J (2000) Particulate matter in the atmosphere: which particle properties are important for its effects on health? Sci Total Environ 249:85–101

    Article  CAS  Google Scholar 

  • He LY, Hu M, Huang XF, BD Y, Zhang YH, Liu DQ (2004) Measurement of emissions of fine particulate organic matter from Chinese cooking. Atmos Environ 38:6557–6564

    Article  CAS  Google Scholar 

  • Hildemann LM, Markowski GR, Michael CJ, Glen RC (1991) Submicrometer aerosol mass distributions of emissions from boilers, fireplaces, automobiles, diesel trucks, and meat-cooking operations. Aerosol Sci Technol 14:138–152

    Article  CAS  Google Scholar 

  • Ho SS, Yu JZ (2004) In-injection port thermal desorption and subsequent gas chromatography-mass spectrometric analysis of polycyclic aromatic hydrocarbons and n-alkanes in atmospheric aerosol samples. J Chromatogr A 1059:121–129

    Article  CAS  Google Scholar 

  • Ho SS, Yu JZ, Chow JC, Zielinska B, Watson JG, Sit EHL, Schauer JJ (2008) Evaluation of an in-injection port thermal desorption-gas chromatography/mass spectrometry method for analysis of non-polar organic compounds in ambient aerosol samples. J Chromatogr A 1200:217–227

    Article  CAS  Google Scholar 

  • Ho SS, Yu JZ, Chow JC, Zielinska B, Watson JG, Sit EHL, Schauer JJ (2011) Precautions for in-injection port thermal desorption-gas chromatography/mass spectrometry (TD-GC/MS) as applied to aerosol filter samples. Atmos Environ 45:1491–1496

    Article  CAS  Google Scholar 

  • Hu H, Yang Q, Lu X, Wang WC, Wang SS, Fan MH (2010) Air pollution and control in different areas of China. Crit Rev Env Sci Tec 40:452–518

    Article  Google Scholar 

  • Ko YC, Lee CH, Chen MJ, Huang CC, Chang WY, Lin HJ, Wang HZ, Chang PY (1997) Risk factors for primary lung cancer among non-smoking women in Taiwan. Int J Epidemiol 26:24–31

    Article  CAS  Google Scholar 

  • Larsen RK, Baker JE (2003) Source apportionment of polycyclic aromatic hydrocarbons in the urban atmosphere: a comparison of three methods. Environ Sci Technol 37:1873–1881

    Article  CAS  Google Scholar 

  • Li CT, Lin YC, Lee WJ, Tsai PJ (2003) Emission of polycyclic aromatic hydrocarbons and their carcinogenic potencies from cooking sources to the urban atmosphere. Environ Health Persp 111:483–487

    Article  CAS  Google Scholar 

  • Li S, Pan D, Wang G (1994) Analysis of polycyclic aromatic hydrocarbons in cooking oil fumes. Arch Environ Health 49:119–122

    Article  CAS  Google Scholar 

  • Li YC, Shu M, Ho SSH, Wang C, Cao JJ, Wang GH, Wang XX, Wang K, Zhao XQ (2015) Characteristics of PM2.5 emitted from different cooking activities in China. Atmos Res 166:83–91

    Article  Google Scholar 

  • Li Z, Wen Q, Zhang R (2017) Sources, health effects and control strategies of indoor fine particulate matter (PM2.5): a review. Sci Total Environ 586:610–622

    Article  CAS  Google Scholar 

  • Liu J, Man R, Ma S, Li J, Wu Q, Peng J (2015) Atmospheric levels and health risk of polycyclic aromatic hydrocarbons (PAHs) bound to PM2.5 in Guangzhou, China. Mar Pollut Bull 100:134–143

    Article  CAS  Google Scholar 

  • Liu WX, Dou H, Wei ZC, Chang B, Qiu WX, Liu Y, Tao S (2009) Emission characteristics of polycyclic aromatic hydrocarbons from combustion of different residential coals in North China. Sci Total Environ 407:1436–1446

    Article  CAS  Google Scholar 

  • Marr LC, Dzepina K, Jimenez JL, Reisen F (2005) Sources and transformations of particle-bound polycyclic aromatic hydrocarbons in Mexico city. Atmos Chem Phys 5:1733–1745

    Article  Google Scholar 

  • McDonald JD, Zielinska B, Fujita EM, Sagebiel JC, Chow JC, Watson JG (2003) Emissions from charbroiling and grilling of chicken and beef. J Air Waste Manage Assoc 53:185–194

    Article  CAS  Google Scholar 

  • Mohr C, DeCarlo PF, Heringa MF, Chirico R, Slowik JG, Richter R, Reche C, Alastuey A, Querol X, Seco R, Peñuelas J, Jiménez JL, Crippa M, Zimmermann R, Baltensperger U, Prévôt ASH (2012) Identification and quantification of organic aerosol from cooking and other sources in Barcelona using aerosol mass spectrometer data. Atmos Chem Phys 12:1649–1665

    Article  CAS  Google Scholar 

  • Moret S, Conte LS (2000) Polycyclic aromatic hydrocarbons in edible fats and oils: occurrence and analytical methods. J Chromatogr A 882:245–253

    Article  CAS  Google Scholar 

  • Nisbet IC, Lagoy PK (1992) Toxic equivalency factors (TEFs) for polycyclic aromatic hydrocarbons (PAHs). Regul Toxicol Pharmacol 16:290–300

    Article  CAS  Google Scholar 

  • Park SU, Kim JG, Jeong MJ, Song BJ (2011) Source identification of atmospheric polycyclic aromatic hydrocarbons in industrial complex using diagnostic ratios and multivariate factor analysis. Arch Environ Con Tox 60:576–589

    Article  CAS  Google Scholar 

  • Pui DYH, Chen SC, Zuo Z (2014) PM2.5 in China: measurements, sources, visibility and health effects, and mitigation. Particuology 13:1–26

    Article  CAS  Google Scholar 

  • Qu YH, Xu GX, Zhou JZ, Chen TD, Zhu LF, Shields PG, Wang HW, Gao YT (1992) Genotoxicity of heated cooking oil vapors. Mutat Res-Gen Tox 298:105–111

    Article  CAS  Google Scholar 

  • Ravindra K, Grieken SRV (2008) Atmospheric polycyclic aromatic hydrocarbons: source attribution, emission factors and regulation. Atmos Environ 42:2895–2921

    Article  CAS  Google Scholar 

  • Rogge WF, Hildemann LM, Mazurek MA, Cass GR, Simoneit BRT (1991) Sources of fine organic aerosol. 1. Charbroilers and meat cooking operations. Environ Sci Technol 25:1112–1125

    Article  CAS  Google Scholar 

  • Rogge WF, Hildemann LM, Mazurek MA, Cass GR, Simoneit BRT (1993) Sources of fine organic aerosol. 2. Noncatalyst and catalyst-equipped automobiles and heavy-duty diesel trucks. Environ Sci Technol 27:636–651

    Article  CAS  Google Scholar 

  • Rogge WF, Hildemann LM, Mazurek MA, Cass GR, Simoneit BRT (1998) Sources of fine organic aerosol. 9. Pine, oak, and synthetic log combustion in residential fireplaces. Environ Sci Technol 32:13–22

    Article  CAS  Google Scholar 

  • Saito E, Tanaka N, Miyazaki A, Tsuzaki M (2014) Concentration and particle size distribution of polycyclic aromatic hydrocarbons formed by thermal cooking. Food Chem 153:285–291

    Article  CAS  Google Scholar 

  • Schauer JJ, Kleeman MJ, Cass GR, Simoneit BRT (1999) Measurement of emissions from air pollution sources. 1. C1 through C29 organic compounds from meat charbroiling. Environ Sci Technol 33:1566–1577

    Article  CAS  Google Scholar 

  • Schauer JJ, Mazurek MA, Cass GR (2007) Source apportionment of airborne particulate matter using organic compounds as tracers. Atmos Environ 41:241–259

    Article  Google Scholar 

  • See SW, Balasubramanian R (2006) Risk assessment of exposure to indoor aerosols associated with Chinese cooking. Environ Res 102:197–204

    Article  CAS  Google Scholar 

  • See SW, Balasubramanian R (2008) Chemical characteristics of fine particles emitted from different gas cooking methods. Atmos Environ 42:8852–8862

    Article  CAS  Google Scholar 

  • Sepetdjian E, Saliba N, Shihadeh A (2010) Carcinogenic PAH in watepipe charcoal products. Food Chem Toxicol 48:3242–3245

    Article  CAS  Google Scholar 

  • Sheesley RJ, Schauer JJ, Chowdhury Z, Cass GR, Simoneit BRT (2003) Characterization of organic aerosols emitted from the combustion of biomass indigenous to South Asia. J Geophys Res Atomos 108:1761–1762

    Google Scholar 

  • Shen G, Tao S, Chen Y, Zhang Y, Wei S, Xue M, Wang B, Wang R, Lu Y, Li W, Shen H, Huang Y, Chen H (2013) Emission characteristics for polycyclic aromatic hydrocarbons from solid fuels burned in domestic stoves in rural China. Environ Sci Technol 47:14485–14494

    Article  CAS  Google Scholar 

  • Tanaka N, Ohtake K, Tsuzaki M, Miyazaki A (2012) Analysis of polycyclic aromatic hydrocarbons in oil-mist emitted from food grilling. Bunseki. Kagaku 61:77–86

    Google Scholar 

  • Tobiszewski M, Namieśnik J (2012) PAH diagnostic ratios for the identification of pollution emission sources. Environ Pollut 162:110–119

    Article  CAS  Google Scholar 

  • Wang D, Pakbin P, Shafer MM, Antkiewicz D, Schauer JJ, Sioutas C (2013) Macrophage reactive oxygen species activity of water-soluble and water-insoluble fractions of ambient coarse, PM2.5 and ultrafine particulate matter (PM) in Los Angeles. Atmos Environ 77:301–310

    Article  CAS  Google Scholar 

  • Wang L, Xiang Z, Stevanovic S, Ristovski Z, Salimi F, Gao J, Wang H, Li L (2017) Role of Chinese cooking emissions on ambient air quality and human health. Sci Total Environ 589:173–181

    Article  CAS  Google Scholar 

  • Wasserman AE (1972) Thermally produced flavor components in the aroma of meat and poultry. J Agr Food Chem 20:737–741

    Article  CAS  Google Scholar 

  • Watson JG, Fujita EM, Chow JC, Zielinska B, Richards LW, Neff W, Dietrich D (1998) Northern front range air quality study. Final report

  • Wu PF, Chiang TA, Wang LF, Chang CS, Ko YC (1998) Nitro-polycyclic aromatic hydrocarbon contents of fumes from heated cooking oils and prevention of mutagenicity by catechin. Mutat Res 403:29–34

    Article  CAS  Google Scholar 

  • Wu PF, Chiang TA, Ko YC, Lee H (1999) Genotoxicity of fumes from heated cooking oils produced in Taiwan. Environ Res 80:122–126

    Article  CAS  Google Scholar 

  • Yadav AK, Kumar K, Kasim AMBHA, Singh MP, Parida SK, Sharan M (2003) Visibility and incidence of respiratory diseases during the 1998 haze episode in Brunei Darussalam. Pure Appl Geophys 160:265–277

    Article  Google Scholar 

  • Yao Z, Li J, Wu B, Hao X, Yin Y, Jiang X (2015) Characteristics of PAHs from deep-frying and frying cooking fumes. Environ Sci Pollut Res 22:16110–16120

    Article  CAS  Google Scholar 

  • Yassaa N, Meklati BY, Cecinato A, Marino F (2001) Particulate n-alkanes, n-alkanoic acids and polycyclic aromatic hydrocarbons in the atmosphere of Algiers city area. Atmos Environ 35:1843–1851

    Article  CAS  Google Scholar 

  • Yunker MB, Macdonald RW, Vingarzan R, Mitchell RH, Goyette D, Sylvestre S (2002) PAHs in the Fraser River basin: a critical appraisal of PAH ratios as indicators of PAH source and composition. Org Geochem 33:489–515

    Article  CAS  Google Scholar 

  • Zhang J, Liang Y, Ma Z, Lin A, Zhao H (2016) Characteristics of PAHs source profile in PM2.5 from typical source in Beijing. Chinese. J Environ Eng 10:3141–3146

    CAS  Google Scholar 

  • Zhang N, Han B, He F, Xu J, Zhao R, Zhang Y, Bai Z (2017) Chemical characteristic of PM2.5 emission and inhalational carcinogenic risk of domestic Chinese cooking. Environ Pollut 227:24–30

    Article  CAS  Google Scholar 

  • Zhang Y, Schauer JJ, Zhang Y, Zeng L, Wei Y, Liu Y, Shao M (2008) Characteristics of particulate carbon emissions from real-world Chinese coal combustion. Environ Sci Technol 42:5068–5073

    Article  CAS  Google Scholar 

  • Zhao Y, Hu M, Slanina S, Zhang Y (2007) The molecular distribution of fine particulate organic matter emitted from Western-style fast food cooking. Atmos Environ 41:8163–8171

    Article  CAS  Google Scholar 

  • Zhong L, Goldberg MS, Gao YT, Jin F (1999) Lung cancer and indoor air pollution arising from Chinese-style cooking among nonsmoking women living in Shanghai, China. Epidemiology 10:488

    Article  CAS  Google Scholar 

  • Zhu L, Wang J (2003) Sources and patterns of polycyclic aromatic hydrocarbons pollution in kitchen air, China. Chemosphere 50:611–618

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We thank Ting Zhang, Jing-Jing Meng, Sui-Xin Liu, and Rong Zhang for their great helps with the chemical analyses and the anonymous reviewers for their valuable suggestions.

Funding

This study was supported by the National Natural Science Foundation (41205095) of China, foundation of Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control (KHK1407), the Two-Way Support Programs of Sichuan Agricultural University (03570848), and National Undergraduate Training Program for Innovation and Entrepreneurship (201510626043).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yun-Chun Li or Steven Sai Hang Ho.

Additional information

Responsible editor: Constantini Samara

Electronic supplementary material

ESM 1

(DOCX 44 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, YC., Qiu, JQ., Shu, M. et al. Characteristics of polycyclic aromatic hydrocarbons in PM2.5 emitted from different cooking activities in China. Environ Sci Pollut Res 25, 4750–4760 (2018). https://doi.org/10.1007/s11356-017-0603-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-017-0603-0

Keywords

Navigation