Skip to main content

Advertisement

Log in

Distribution of potentially toxic elements (PTEs) in tailings, soils, and plants around Gol-E-Gohar iron mine, a case study in Iran

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

This study investigated the concentration of potentially toxic elements (PTEs) including Al, As, Cd, Co, Cr, Cu, Fe, Hg, Mn, Mo, Ni, Pb, Sb, V, and Zn in 102 soils (in the Near and Far areas of the mine), 7 tailings, and 60 plant samples (shoots and roots of Artemisia sieberi and Zygophylum species) collected at the Gol-E-Gohar iron ore mine in Iran. The elemental concentrations in tailings and soil samples (in Near and Far areas) varied between 7.4 and 35.8 mg kg−1 for As (with a mean of 25.39 mg kg−1 for tailings), 7.9 and 261.5 mg kg−1 (mean 189.83 mg kg−1 for tailings) for Co, 17.7 and 885.03 mg kg−1 (mean 472.77 mg kg−1 for tailings) for Cu, 12,500 and 400,000 mg kg−1 (mean 120,642.86 mg kg−1 for tailings) for Fe, and 28.1 and 278.1 mg kg−1 (mean 150.29 mg kg−1 for tailings) for Ni. A number of physicochemical parameters and pollution index for soils were determined around the mine. Sequential extractions of tailings and soil samples indicated that Fe, Cr, and Co were the least mobile and that Mn, Zn, Cu, and As were potentially available for plants uptake. Similar to soil, the concentration of Al, As, Co, Cr, Cu, Fe, Mn, Mo, Ni, and Zn in plant samples decreased with the distance from the mining/processing areas. Data on plants showed that metal concentrations in shoots usually exceeded those in roots and varied significantly between the two investigated species (Artemisia sieberi > Zygophylum). All the reported results suggest that the soil and plants near the iron ore mine are contaminated with PTEs and that they can be potentially dispersed in the environment via aerosol transport and deposition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Abreu MM, Santos ES, Ferreira M, Magalhães MCF (2012) Cistus salviifolius a promising species for mine wastes remediation. J Geochem Explor 113:86–93

    Article  CAS  Google Scholar 

  • Achiba WB, Lakhdar A, Gabteni N et al (2010) Accumulation and fractionation of trace metals in a Tunisian calcareous soil amended with farmyard manure and municipal solid waste compost. J Hazard Mater 176:99–108

    Article  CAS  Google Scholar 

  • Adriano DC (2013) Trace elements in the terrestrial environment. Springer Science & Business Media

  • Alavi M (2004) Regional stratigraphy of the Zagros fold-thrust belt of Iran and its proforeland evolution. Am J Sci 304:1–20

    Article  Google Scholar 

  • Albanese S, De Vivo B, Lima A, Cicchella D (2007) Geochemical background and baseline values of toxic elements in stream sediments of Campania region (Italy). J Geochem Explor 93:21–34

    Article  CAS  Google Scholar 

  • Alloway BJ (1995) Heavy metals in soils. Springer Science & Business Media

  • Alloway BJ (2012) Heavy Metals in Soils: Trace Metals and Metalloids in Soils and their Bioavailability, 3, illustr. Springer Science & Business Media

  • Alloway BJ, Thornton I, Smart GA et al (1988) Metal availability. Sci Total Environ 75:41–69

    Article  CAS  Google Scholar 

  • Alvarez E, Marcos MLF, Vaamonde C, Fernández-Sanjurjo MJ (2003) Heavy metals in the dump of an abandoned mine in Galicia (NW Spain) and in the spontaneously occurring vegetation. Sci Total Environ 313:185–197

    Article  CAS  Google Scholar 

  • Anjos C, Magalhães MCF, Abreu MM (2012) Metal (Al, Mn, Pb and Zn) soils extractable reagents for available fraction assessment: comparison using plants, and dry and moist soils from the Braçal abandoned lead mine area, Portugal. J Geochem Explor 113:45–55

    Article  CAS  Google Scholar 

  • Anju M, Banerjee DK (2010) Comparison of two sequential extraction procedures for heavy metal partitioning in mine tailings. Chemosphere 78:1393–1402

    Article  CAS  Google Scholar 

  • Anju M, Banerjee DK (2011) Associations of cadmium, zinc, and lead in soils from a lead and zinc mining area as studied by single and sequential extractions. Environ Monit Assess 176:67–85

    Article  CAS  Google Scholar 

  • Arenas-Lago D, Andrade ML, Lago-Vila M et al (2014) Sequential extraction of heavy metals in soils from a copper mine: distribution in geochemical fractions. Geoderma 230:108–118

    Article  CAS  Google Scholar 

  • Arenas-Lago D, Andrade ML, Vega FA, Singh BR (2016) TOF-SIMS and FE-SEM/EDS to verify the heavy metal fractionation in serpentinite quarry soils. Catena 136:30–43

    Article  CAS  Google Scholar 

  • Ariza JLG, Giraldez I, Sanchez-Rodas D, Morales E (2000) Metal sequential extraction procedure optimized for heavily polluted and iron oxide rich sediments. Anal Chim Acta 414:151–164

    Article  Google Scholar 

  • Athar R, Ahmad M (2002) Heavy metal toxicity: effect on plant growth and metal uptake by wheat, and on free living azotobacter. Water Air Soil Pollut 138:165–180

    Article  CAS  Google Scholar 

  • Baker AJM (1981) Accumulators and excluders-strategies in the response of plants to heavy metals. J Plant Nutr 3:643–654

    Article  CAS  Google Scholar 

  • Barnes HL (1997) Geochemistry of hydrothermal ore deposits. John Wiley & Sons

  • Barton MD (2013) Iron oxide (−Cu-Au-REE-P-Ag-U-Co) systems. In: Elsevier Inc

  • Basta NT, McGowen SL (2004) Evaluation of chemical immobilization treatments for reducing heavy metal transport in a smelter-contaminated soil. Environ Pollut 127:73–82

    Article  CAS  Google Scholar 

  • Bech J, Corrales I, Tume P et al (2012a) Accumulation of antimony and other potentially toxic elements in plants around a former antimony mine located in the Ribes Valley (Eastern Pyrenees). J Geochem Explor 113:100–105

    Article  CAS  Google Scholar 

  • Bech J, Duran P, Roca N et al (2012b) Shoot accumulation of several trace elements in native plant species from contaminated soils in the Peruvian Andes. J Geochem Explor 113:106–111

    Article  CAS  Google Scholar 

  • Benin AL, Sargent JD, Dalton M, Roda S (1999) High concentrations of heavy metals in neighborhoods near ore smelters in northern Mexico. Environ Health Perspect 107:279

    Article  CAS  Google Scholar 

  • Berberian M, King GCP (1981) Towards a paleogeography and tectonic evolution of Iran. Can J Earth Sci 18:210–265

    Article  Google Scholar 

  • Bes CM, Pardo T, Bernal MP, Clemente R (2014) Assessment of the environmental risks associated with two mine tailing soils from the La Unión-Cartagena (Spain) mining district. J Geochem Explor 147:98–106

    Article  CAS  Google Scholar 

  • Bi X, Feng X, Yang Y et al (2009) Allocation and source attribution of lead and cadmium in maize (Zea mays L.) impacted by smelting emissions. Environ Pollut 157:834–839

    Article  CAS  Google Scholar 

  • Bini C, Bech J (2014) PHEs, Environment and Human Health: Potentially harmful elements in the environment and the impact on human health. Springer

  • Boularbah A, Schwartz C, Bitton G et al (2006) Heavy metal contamination from mining sites in South Morocco: 2. Assessment of metal accumulation and toxicity in plants. Chemosphere 63:811–817

    Article  CAS  Google Scholar 

  • Cappuyns V, Swennen R, Niclaes M (2007) Application of the BCR sequential extraction scheme to dredged pond sediments contaminated by Pb–Zn mining: a combined geochemical and mineralogical approach. J Geochem Explor 93:78–90

    Article  CAS  Google Scholar 

  • Cerqueira B, Vega FA, Serra C et al (2011) Time of flight secondary ion mass spectrometry and high-resolution transmission electron microscopy/energy dispersive spectroscopy: a preliminary study of the distribution of Cu 2+ and Cu 2+/Pb 2+ on a Bt horizon surfaces. J Hazard Mater 195:422–431

    Article  CAS  Google Scholar 

  • Chai Y, Guo J, Chai S et al (2015) Source identification of eight heavy metals in grassland soils by multivariate analysis from the Baicheng–Songyuan area, Jilin Province, Northeast China. Chemosphere 134:67–75

    Article  CAS  Google Scholar 

  • Chao TT, Zhou L (1983) Extraction techniques for selective dissolution of amorphous iron oxides from soils and sediments. Soil Sci Soc Am J 47:225–232

    Article  CAS  Google Scholar 

  • Chojnacka K, Chojnacki A, Gorecka H, Górecki H (2005) Bioavailability of heavy metals from polluted soils to plants. Sci Total Environ 337:175–182

    Article  CAS  Google Scholar 

  • Clemente R, Paredes C, Bernal MP (2007) A field experiment investigating the effects of olive husk and cow manure on heavy metal availability in a contaminated calcareous soil from Murcia (Spain). Agric Ecosyst Environ 118:319–326

    Article  CAS  Google Scholar 

  • Csavina J, Field J, Taylor MP et al (2012) A review on the importance of metals and metalloids in atmospheric dust and aerosol from mining operations. Sci Total Environ 433:58–73

    Article  CAS  Google Scholar 

  • Cui LP, Bai JF, Shi YH et al (2004) Heavy metals in soil contaminated by coal mining activity. Acta Pedol Sin 41:896–904

    Google Scholar 

  • Davidson CM, Urquhart GJ, Ajmone-Marsan F et al (2006) Fractionation of potentially toxic elements in urban soils from five European cities by means of a harmonised sequential extraction procedure. Anal Chim Acta 565:63–72

    Article  CAS  Google Scholar 

  • Delgado J, Barba-Brioso C, Nieto JM, Boski T (2011) Speciation and ecological risk of toxic elements in estuarine sediments affected by multiple anthropogenic contributions (Guadiana saltmarshes, SW Iberian Peninsula): I. Surficial sediments. Sci Total Environ 409:3666–3679

    Article  CAS  Google Scholar 

  • Dobran S, Zagury GJ (2006) Arsenic speciation and mobilization in CCA-contaminated soils: influence of organic matter content. Sci Total Environ 364:239–250

    Article  CAS  Google Scholar 

  • Dold B (2003) Speciation of the most soluble phases in a sequential extraction procedure adapted for geochemical studies of copper sulfide mine waste. J Geochem Explor 80:55–68

    Article  CAS  Google Scholar 

  • Esmaeili A, Moore F, Keshavarzi B et al (2014) A geochemical survey of heavy metals in agricultural and background soils of the Isfahan industrial zone, Iran. Catena 121:88–98

    Article  CAS  Google Scholar 

  • Filgueiras AV, Lavilla I, Bendicho C (2002a) Chemical sequential extraction for metal partitioning in environmental solid samples. J Environ Monit 4:823–857

    Article  CAS  Google Scholar 

  • Filgueiras A, Lavilla I, Bendicho C (2002b) Comparison of the standard SM&T sequential extraction method with small-scale ultrasound-assisted single extractions for metal partitioning in sediments. Anal Bioanal Chem 374:103–108

    Article  CAS  Google Scholar 

  • Frietsch R (1978) On the magmatic origin of iron ores of the Kiruna type. Econ Geol 73:478–485

    Article  CAS  Google Scholar 

  • Galán E, Fernández-Caliani JC, González I et al (2008) Influence of geological setting on geochemical baselines of trace elements in soils. Application to soils of South–West Spain. J Geochem Explor 98:89–106

    Article  CAS  Google Scholar 

  • García-Ordiales E, Covelli S, Esbrí JM et al (2016) Sequential extraction procedure as a tool to investigate PTHE geochemistry and potential geoavailability of dam sediments (Almadén mining district, Spain). Catena 147:394–403

    Article  CAS  Google Scholar 

  • Gee GW, Bauder JW, Klute A (1986) Particle-size analysis. Methods soil Anal Part 1 Phys Mineral methods 383–411

  • Gibson MJ, Farmer JG (1986) Multi-step sequential chemical extraction of heavy metals from urban soils. Environ Pollut B 11:117–135

    Article  CAS  Google Scholar 

  • Goldschmidt VM (1937) The principles of distribution of chemical elements in minerals and rocks. The seventh Hugo Müller Lecture, delivered before the Chemical Society on March 17th, 1937. J Chem Soc 655–673

  • Goldschmidt VM (1958) Geochemistry.

  • Gonnelli C, Renella G (2013) Chromium and nickel. In: Heavy metals in soils. Springer, pp 313–333

  • Guevara-Riba A, Sahuquillo A, Rubio R, Rauret G (2004) Assessment of metal mobility in dredged harbour sediments from Barcelona, Spain. Sci Total Environ 321:241–255

    Article  CAS  Google Scholar 

  • Halbach P, Von Borstel D, Gundermann K-D (1980) The uptake of uranium by organic substances in a peat bog environment on a granitic bedrock. Chem Geol 29:117–138

    Article  CAS  Google Scholar 

  • Hall GEM, Gauthier G, Pelchat J-C et al (1996) Application of a sequential extraction scheme to ten geological certified reference materials for the determination of 20 elements. J Anal At Spectrom 11:787–796

    Article  CAS  Google Scholar 

  • Hauck SA (1990) Petrogenesis and tectonic setting of middle Proterozoic iron oxide–rich ore deposits: an ore deposit model for Olympic Dam-type mineralization. US Geol Surv Bull 1932:4–39

    Google Scholar 

  • Heydari E (2008) Tectonics versus eustatic control on supersequences of the Zagros Mountains of Iran. Tectonophysics 451:56–70

    Article  Google Scholar 

  • Hooda P (2010) Trace elements in soils. John Wiley & Sons

  • Hosseini SA, Asghari O (2016) Multivariate geostatistical simulation of the Gole Gohar iron ore deposit. Iran 116:423–430

    Google Scholar 

  • Ji K, Kim J, Lee M et al (2013) Assessment of exposure to heavy metals and health risks among residents near abandoned metal mines in Goseong, Korea. Environ Pollut 178:322–328

    Article  CAS  Google Scholar 

  • Kabala C, Singh BR (2001) Fractionation and mobility of copper, lead, and zinc in soil profiles in the vicinity of a copper smelter. J Environ Qual 30:485–492

    Article  CAS  Google Scholar 

  • Kabata-Pendias A (2010) Trace elements in soils and plants, Fourth edn. CRC Press Boca Raton, FL

    Book  Google Scholar 

  • Kahr G, Madsen FT (1995) Determination of the cation exchange capacity and the surface area of bentonite, illite and kaolinite by methylene blue adsorption. Appl Clay Sci 9:327–336

    Article  CAS  Google Scholar 

  • Keshavarzi B, Moore F, Rastmanesh F, Kermani M (2012) Arsenic in the Muteh gold mining district, Isfahan, Iran. Environ Earth Sci 67:959–970

    Article  CAS  Google Scholar 

  • Kisvarsanyi G, Proctor PD (1967) Trace-element content of magnetites and hematites, southeast Missouri metallogenetic province, USA. Econ Geol 62:449–471

    Article  Google Scholar 

  • Krauskopf KB (1979) Introduction to geochemistry. International series in the earth and planetary sciences

  • Kříbek B, Majer V, Pašava J et al (2014) Contamination of soils with dust fallout from the tailings dam at the Rosh Pinah area, Namibia: regional assessment, dust dispersion modeling and environmental consequences. J Geochem Explor 144:391–408

    Article  CAS  Google Scholar 

  • Levei E, Frentiu T, Ponta M et al (2013) Characterization and assessment of potential environmental risk of tailings stored in seven impoundments in the Aries river basin, Western Romania. Chem Cent J 7:5

    Article  CAS  Google Scholar 

  • Levinson AA (1974) Introduction to exploration geochemistry.[Textbook]

  • Li X, Coles BJ, Ramsey MH, Thornton I (1995) Chemical partitioning of the new National Institute of Standards and Technology standard reference materials (SRM 2709–2711) by sequential extraction using inductively coupled plasma atomic emission spectrometry. Analyst 120:1415–1419

    Article  CAS  Google Scholar 

  • Li Y, Wang H, Wang H et al (2014) Heavy metal pollution in vegetables grown in the vicinity of a multi-metal mining area in Gejiu, China: total concentrations, speciation analysis, and health risk. Environ Sci Pollut Res 21:12569–12582

    Article  CAS  Google Scholar 

  • Li P, Lin C, Cheng H et al (2015) Contamination and health risks of soil heavy metals around a lead/zinc smelter in southwestern China. Ecotoxicol Environ Saf 113:391–399

    Article  CAS  Google Scholar 

  • Liénard A, Brostaux Y, Colinet G (2014) Soil contamination near a former Zn–Pb ore-treatment plant: Evaluation of deterministic factors and spatial structures at the landscape scale. J Geochem Explor 147:107–116

    Article  CAS  Google Scholar 

  • Liu Z, Pan S, Sun Z et al (2015) Heavy metal spatial variability and historical changes in the Yangtze River estuary and North Jiangsu tidal flat. Mar Pollut Bull 98:115–129

    Article  CAS  Google Scholar 

  • Liu G, Wang J, Zhang E et al (2016) Heavy metal speciation and risk assessment in dry land and paddy soils near mining areas at Southern China. Environ Sci Pollut Res 23:8709–8720

    Article  CAS  Google Scholar 

  • Loska K, Wiechuła D, Korus I (2004) Metal contamination of farming soils affected by industry. Environ Int 30:159–165

    Article  CAS  Google Scholar 

  • Luo L, Chu B, Liu Y et al (2014) Distribution, origin, and transformation of metal and metalloid pollution in vegetable fields, irrigation water, and aerosols near a Pb-Zn mine. Environ Sci Pollut Res 21:8242–8260

    Article  CAS  Google Scholar 

  • Ma LQ, Komart KM, Tu C et al (2001) A Fern that Hyperaccumulates Arsenic A hardy, versatile, fast-growing plant helps to remove arsenic from contaminated soils [J]. World Environ 3:47–48

    Google Scholar 

  • Ma L, Yang Z, Li L, Wang L (2016) Source identification and risk assessment of heavy metal contaminations in urban soils of Changsha, a mine-impacted city in Southern China. Environ Sci Pollut Res 1–9

  • Maiz I, Esnaola MV, Millan E (1997) Evaluation of heavy metal availability in contaminated soils by a short sequential extraction procedure. Sci Total Environ 206:107–115

    Article  CAS  Google Scholar 

  • Mazdab FK (2001) The distribution of trace elements in iron sulfides and associated chlorine-bearing silicates.

  • Meunier A (2005) Clays. Springer Science & Business Media, New York

  • Monjezi M, Rezaei M, Varjani AY (2009) Prediction of rock fragmentation due to blasting in Gol-E-Gohar iron mine using fuzzy logic. Int J Rock Mech Min Sci 46:1273–1280

    Article  Google Scholar 

  • Monteiro LVS, Xavier RP, Hitzman MW et al (2008) Mineral chemistry of ore and hydrothermal alteration at the Sossego iron oxide–copper–gold deposit, Carajás Mineral Province, Brazil. Ore Geol Rev 34:317–336

    Article  Google Scholar 

  • Monterroso C, Rodríguez F, Chaves R et al (2014) Heavy metal distribution in mine-soils and plants growing in a Pb/Zn-mining area in NW Spain. Appl Geochem 44:3–11

    Article  CAS  Google Scholar 

  • Moore DM, Reynolds RC (1997) X-ray diffraction and the identification and analysis of clay minerals. Oxford university press, Oxford

    Google Scholar 

  • Moore F, Dehbandi R, Keshavarzi B, Amjadian K (2016) Potentially toxic elements in the soil and two indigenous plant species in Dashkasan epithermal gold mining area, West Iran. Environ Earth Sci 75:1–16

    Article  CAS  Google Scholar 

  • Moreno-Jiménez E, Peñalosa JM, Manzano R et al (2009) Heavy metals distribution in soils surrounding an abandoned mine in NW Madrid (Spain) and their transference to wild flora. J Hazard Mater 162:854–859

    Article  CAS  Google Scholar 

  • Mücke A, Golestaneh F (1982) The genesis of the Gol Gohar iron ore deposit (Iran). Institu fur Mineral und Kritallographieder Tech Univ Berlin 193–212

  • Mücke A, Younessi R (1994) Magnetite-apatite deposits (Kiruna-type) along the Sanandaj-Sirjan zone and in the Bafq area, Iran, associated with ultramafic and calcalkaline rocks and carbonatites. Mineral Petrol 50:219–244

    Article  Google Scholar 

  • Müller G (1969) Index of geoaccumulation in sediments of the Rhine River. Geol J 2:108–118

    Google Scholar 

  • Nabatian G, Rastad E, Neubauer F et al (2015) Iron and Fe–Mn mineralisation in Iran: implications for Tethyan metallogeny. Aust J Earth Sci 62:211–241

    Article  CAS  Google Scholar 

  • Nelson DW, Sommers LE, Sparks DL, et al (1996) Total carbon, organic carbon, and organic matter. Methods soil Anal Part 3-chemical methods 961–1010

  • Nemati K, Bakar NKA, Abas MR (2009) Investigation of heavy metals mobility in shrimp aquaculture sludge—comparison of two sequential extraction procedures. Microchem J 91:227–231

    Article  CAS  Google Scholar 

  • Nyamangara J (1998) Use of sequential extraction to evaluate zinc and copper in a soil amended with sewage sludge and inorganic metal salts. Agric Ecosyst Environ 69:135–141

    Article  CAS  Google Scholar 

  • Osakwe SA (2013) Chemical partitioning of iron, cadmium, nickel and chromium in contaminated soils of south-eastern Nigeria. Chem Speciat Bioavailab 25:71–78

    Article  CAS  Google Scholar 

  • Pal DC, Barton MD, Sarangi AK (2009) Deciphering a multistage history affecting U–Cu (−Fe) mineralization in the Singhbhum Shear Zone, eastern India, using pyrite textures and compositions in the Turamdih U–Cu (−Fe) deposit. Miner Depos 44:61–80

    Article  CAS  Google Scholar 

  • Pascual JA, Garcia C, Hernandez T, Ayuso M (1997) Changes in the microbial activity of an arid soil amended with urban organic wastes. Biol Fertil Soils 24:429–434

    Article  CAS  Google Scholar 

  • Pirajno F (2009) Hydrothermal processes associated with meteorite impacts. In: Hydrothermal Processes and Mineral Systems. Springer, pp 1097–1130

  • Prabhakar G, Sorooshian A, Toffol E et al (2014) Spatiotemporal distribution of airborne particulate metals and metalloids in a populated arid region. Atmos Environ 92:339–347

    Article  CAS  Google Scholar 

  • Pueyo M, Mateu J, Rigol A et al (2008) Use of the modified BCR three-step sequential extraction procedure for the study of trace element dynamics in contaminated soils. Environ Pollut 152:330–341

    Article  CAS  Google Scholar 

  • Qiao Y, Yang Y, Gu J, Zhao J (2013) Distribution and geochemical speciation of heavy metals in sediments from coastal area suffered rapid urbanization, a case study of Shantou Bay, China. Mar Pollut Bull 68:140–146

    Article  CAS  Google Scholar 

  • Qin F, Ji H, Li Q et al (2014) Evaluation of trace elements and identification of pollution sources in particle size fractions of soil from iron ore areas along the Chao River. J Geochem Explor 138:33–49

    Article  CAS  Google Scholar 

  • Ramos-Miras JJ, Roca-Perez L, Guzmán-Palomino M et al (2011) Background levels and baseline values of available heavy metals in Mediterranean greenhouse soils (Spain). J Geochem Explor 110:186–192

    Article  CAS  Google Scholar 

  • Rashed MN (2010) Monitoring of contaminated toxic and heavy metals, from mine tailings through age accumulation, in soil and some wild plants at Southeast Egypt. J Hazard Mater 178:739–746

    Article  CAS  Google Scholar 

  • Rastegari Mehr M, Keshavarzi B, Moore F et al (2016) Contamination level and human health hazard assessment of heavy metals and polycyclic aromatic hydrocarbons (PAHs) in street dust deposited in Mahshahr, southwest of Iran. Hum Ecol Risk Assess Int J 22:1726–1748

    Article  CAS  Google Scholar 

  • Rastmanesh F, Moore F, Keshavarzi B (2010) Speciation and phytoavailability of heavy metals in contaminated soils in Sarcheshmeh area, Kerman Province, Iran. Bull Environ Contam Toxicol 85:515–519

    Article  CAS  Google Scholar 

  • Rattan RK, Datta SP, Chhonkar PK et al (2005) Long-term impact of irrigation with sewage effluents on heavy metal content in soils, crops and groundwater—a case study. Agric Ecosyst Environ 109:310–322

    Article  CAS  Google Scholar 

  • Rauret G (1998) Extraction procedures for the determination of heavy metals in contaminated soil and sediment. Talanta 46:449–455

    Article  CAS  Google Scholar 

  • Reimann C, Filzmoser P (2000) Normal and lognormal data distribution in geochemistry: death of a myth. Consequences for the statistical treatment of geochemical and environmental data. Environ Geol 39:1001–1014

    Article  CAS  Google Scholar 

  • Reimann C, Filzmoser P, Garrett RG (2005) Background and threshold: critical comparison of methods of determination. Sci Total Environ 346:1–16

    Article  CAS  Google Scholar 

  • Rodríguez L, Ruiz E, Alonso-Azcárate J, Rincón J (2009) Heavy metal distribution and chemical speciation in tailings and soils around a Pb–Zn mine in Spain. J Environ Manag 90:1106–1116

    Article  CAS  Google Scholar 

  • Rose AW, Hawkes HE, Webb JS (1979) Geochemistry in mineral exploration. Academic Pr

  • Rusk B, Oliver N, Cleverley J, et al (2010) Physical and chemical characteristics of the Ernest Henry iron oxide copper gold deposit, Australia; implications for IOGC genesis

  • Ryser P, Sauder WR (2006) Effects of heavy-metal-contaminated soil on growth, phenology and biomass turnover of Hieracium piloselloides. Environ Pollut 140:52–61

    Article  CAS  Google Scholar 

  • Salminen R, Tarvainen T (1997) The problem of defining geochemical baselines. A case study of selected elements and geological materials in Finland. J Geochem Explor 60:91–98

    Article  CAS  Google Scholar 

  • Shafie NA, Aris AZ, Zakaria MP et al (2013) Application of geoaccumulation index and enrichment factors on the assessment of heavy metal pollution in the sediments. J Environ Sci Healh A 48:182–190

    Article  CAS  Google Scholar 

  • Sheikholeslami MR, Pique A, Mobayen P et al (2008) Tectono-metamorphic evolution of the Neyriz metamorphic complex, Quri-kor-e-sefid area (Sanandaj-Sirjan Zone, SW Iran). J Asian Earth Sci 31:504–521

    Article  Google Scholar 

  • Siegel FR (2002) Environmental geochemistry of potentially toxic metals. Springer, New York

  • Sipos P, Choi C, May Z (2016) Combination of single and sequential chemical extractions to study the mobility and host phases of potentially toxic elements in airborne particulate matter. Chemie Erde-Geochem 76:481–489

    Article  CAS  Google Scholar 

  • Slack JF, Johnson CA, Lund KI, et al (2011) A new model for Co-Cu-Au deposits in metasedimentary rocks—an IOCG connection? In: Proceedings of the 11th Biennial SGA Meeting, Antofagasta, Chile. pp 489–491

  • Soltani N, Moore F, Keshavarzi B, Sharifi R (2014) Geochemistry of trace metals and rare earth elements in stream water, stream sediments and acid mine drainage from darrehzar copper mine, Kerman, Iran. Water Qual Expo Health 6:97–114

    Article  CAS  Google Scholar 

  • Soltani N, Keshavarzi B, Sorooshian A et al (2017) Oxidative potential (OP) and mineralogy of iron ore particulate matter at the Gol-E-Gohar Mining and Industrial Facility (Iran). Environ Geochem Health. doi:10.1007/s10653-017-9926-5

  • Sorooshian A, Csavina J, Shingler T et al (2012) Hygroscopic and chemical properties of aerosols collected near a copper smelter: implications for public and environmental health. Environ Sci Technol 46:9473–9480

    Article  CAS  Google Scholar 

  • Sposito G (1983) The chemical forms of trace metals in soils. Appl Environ Geochem 123–170

  • Stevenson FJ (1983) Trace metal-organic matter interactions in geologic environments

  • Stocklin J (1968) Structural history and tectonics of Iran: a review. Am Assoc Pet Geol Bull 52:1229–1258

    Google Scholar 

  • Stone M, Droppo IG (1996) Distribution of lead, copper and zinc in size-fractionated river bed sediment in two agricultural catchments of southern Ontario, Canada. Environ Pollut 93:353–362

    Article  CAS  Google Scholar 

  • Sun Y, Zhou Q, Diao C (2008) Effects of cadmium and arsenic on growth and metal accumulation of Cd-hyperaccumulator Solanum nigrum L. Bioresour Technol 99:1103–1110

    Article  CAS  Google Scholar 

  • Sun Y, Zhou Q, Wang L, Liu W (2009) Cadmium tolerance and accumulation characteristics of Bidens pilosa L. as a potential Cd-hyperaccumulator. J Hazard Mater 161:808–814

    Article  CAS  Google Scholar 

  • Taylor MP, Mackay AK, Hudson-Edwards KA, Holz E (2010) Soil Cd, Cu, Pb and Zn contaminants around Mount Isa city, Queensland, Australia: potential sources and risks to human health. Appl Geochem 25:841–855

    Article  CAS  Google Scholar 

  • Teng Y, Ni S, Wang J et al (2010) A geochemical survey of trace elements in agricultural and non-agricultural topsoil in Dexing area, China. J Geochem Explor 104:118–127

    Article  CAS  Google Scholar 

  • Tessier A, Campbell PGC, Bisson M (1979) Sequential extraction procedure for the speciation of particulate trace metals. Anal Chem 51:844–851

    Article  CAS  Google Scholar 

  • Thanabalasingam P, Pickering WF (1985) The sorption of mercury (II) by humic acids. Environ Pollut B 9:267–279

    Article  CAS  Google Scholar 

  • Tume P, Bech J, Tume L et al (2008) Concentrations and distributions of Ba, Cr, Sr, V, Al, and Fe in Torrelles soil profiles (Catalonia, Spain). J Geochem Explor 96:94–105

    Article  CAS  Google Scholar 

  • Uren NC (1992) Forms, reactions, and availability of nickel in soils. Adv Agron 48:141–203

    Article  CAS  Google Scholar 

  • Vega FA, Andrade ML, Covelo EF (2010) Influence of soil properties on the sorption and retention of cadmium, copper and lead, separately and together, by 20 soil horizons: comparison of linear regression and tree regression analyses. J Hazard Mater 174:522–533

    Article  CAS  Google Scholar 

  • Vithanage M, Rajapaksha AU, Oze C et al (2014) Metal release from serpentine soils in Sri Lanka. Environ Monit Assess 186:3415–3429

    Article  CAS  Google Scholar 

  • Williams PJ, Barton MD, Johnson DA et al (2005) Iron oxide copper-gold deposits: geology, space-time distribution, and possible modes of origin. Econ Geol:371–405

  • Xavier RP, Monteiro LVS, Moreto CPN et al (2012) The iron oxide copper-gold systems of the Carajás mineral province, Brazil. Soc Econ Geol:433–454

  • Yan C, Li Q, Zhang X, Li G (2010) Mobility and ecological risk assessment of heavy metals in surface sediments of Xiamen Bay and its adjacent areas, China. Environ Earth Sci 60:1469–1479

    Article  CAS  Google Scholar 

  • Yoon J, Cao X, Zhou Q, Ma LQ (2006) Accumulation of Pb, Cu, and Zn in native plants growing on a contaminated Florida site. Sci Total Environ 368:456–464

    Article  CAS  Google Scholar 

  • Zhu N, Qiang L, Guo X et al (2014) Sequential extraction of anaerobic digestate sludge for the determination of partitioning of heavy metals. Ecotoxicol Environ Saf 102:18–24

    Article  CAS  Google Scholar 

  • Zumdahl S, DeCoste DJ (2014) Introductory chemistry: A foundation, 8th edn. Cengage Learning

Download references

Acknowledgements

This research was financially supported by Gol-E-Gohar mining and industrial company. The authors also gratefully acknowledge the Shiraz University Research Committee and medical geology research center of Shiraz University for supporting this research. AS acknowledges support from Grant 2 P42 ES04940 from the National Institute of Environmental Health Sciences (NIEHS) Superfund Research Program, NIH, and the Center for Environmentally Sustainable Mining through the TRIF Water Sustainability Program at the University of Arizona. Ahmadreza Khosravi is acknowledged for assistance with plant species identification. Saviz Sehatkashani is acknowledged for the assistance with meteorological data from the Meteorological Organization of Iran.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Naghmeh Soltani.

Additional information

Responsible editor: Roberto Terzano

Electronic supplementary material

ESM 1

(DOCX 519 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Soltani, N., Keshavarzi, B., Moore, F. et al. Distribution of potentially toxic elements (PTEs) in tailings, soils, and plants around Gol-E-Gohar iron mine, a case study in Iran. Environ Sci Pollut Res 24, 18798–18816 (2017). https://doi.org/10.1007/s11356-017-9342-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-017-9342-5

Keywords

Navigation