Skip to main content
Log in

An overview of technologies to recover phosphorus as struvite from wastewater: advantages and shortcomings

  • Review Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

Phosphorus (P) is a significant limiting nutrient which is essential for all forms of lives. However, phosphate rock reserves are depleting rapidly due to population growth. At the same time, several countries have imposed legislative regulations on P-release into surface waters due to eutrophication. Nutrient recovery from wastewater can facilitate a sustainable, cost-effective and environment-friendly source of phosphorus. Although P-recovery as struvite from wastewater has been widely studied for a long time, there still exists a lot of challenges for widespread full-scale implementation. This paper presents a comprehensive analysis of the current state of the technologies for phosphorus recovery in the form of struvite. Fluidized bed reactors (FBRs) are widely used compared to continuously stirred reactors for P-recovery as struvite because of different solid and liquid retention time. Commercially available technologies were reported to accomplish about 80% P-removal efficiencies with a reasonable P-recovery for the most of the cases. The struvite production rate of various technologies varies from 0.89 to 13.7 kg/kg influent P. Nevertheless, these technologies are associated with several shortcomings such as high operational costs, high energy consumption, and large footprint. Increasing efforts focusing on the development of sustainable and commercially feasible technologies are expected in this sector as P-recovery is considered to be the future of wastewater engineering.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Abarca RRM, Pusta RS Jr, Labad RB, et al (2017) Chapter fourteen - effect of upflow velocity on nutrient recovery from swine wastewater by fluidized bed struvite crystallization A2 - Ahuja, Satinder BT - Chemistry and Water. Elsevier, pp 511–518

  • Abma WR, Driessen W, Haarhuis R, Van Loosdrecht MCM (2010) Upgrading of sewage treatment plant by sustainable and cost-effective separate treatment of industrial wastewater. Water Sci Technol 61:1715–1722. https://doi.org/10.2166/wst.2010.977

    Article  CAS  Google Scholar 

  • Adnan A, Mavinic DS, Koch FA (2003) Pilot-scale study of phosphorus recovery through struvite crystallization — II: applying in-reactor supersaturation ratio as a process control parameter. J Environ Eng Sci 2:473–483. https://doi.org/10.1139/s03-048

    Article  CAS  Google Scholar 

  • Amann A, Zoboli O, Krampe J, Rechberger H, Zessner M, Egle L (2018) Environmental impacts of phosphorus recovery from municipal wastewater. Resour Conserv Recycl 130:127–139. https://doi.org/10.1016/j.resconrec.2017.11.002

    Article  Google Scholar 

  • Battistoni P, Paci B, Fatone F, Pavan P (2005) Phosphorus removal from supernatants at low concentration using packed and fluidized-bed reactors. Ind Eng Chem Res 44:6701–6707

    Article  CAS  Google Scholar 

  • Baur R, Prasad R, Britton A (2009) Struvite harvesting to reduce ammonia and phosphorus recycle. In: International conference on nutrient recovery from wastewater streams. IWA Publishing, Vancouver, British Columbia, Canada, pp 351–359

  • Benisch M, Baur R, Britton A, Neethling JB, Oleszkiewicz JA (2009) Startup of the first commercial phosphorus recycling facility in the US at Durham AWWTP. Proc Water Environ Fed 2009:102–119

    Article  Google Scholar 

  • Bergmans B (2011) Struvite recovery from digested sludge. Delft University of Technology, Delft

    Google Scholar 

  • Bowers KE, Westerman PW (2005) Performance of cone-shaped fluidized bed struvite crystallizers in removing phosphorus from wastewater. Trans ASAE 48:1227–1234

    Article  CAS  Google Scholar 

  • Brans J (2008) Das Schadeinheitenmodell zur Identifikation und Bewertung von Standorten mit schädlichen Bodenveränderungen am Beispiel Industriepark Höchst. Justus-Liebig-Univ.

  • Brekelmans J (2013) Phosphorus removal in anaerobic effluent by struvite process: ANPHOS Proocess. Colsen Group, Bologna

    Google Scholar 

  • Britton A, Sacluti F, Oldham WK, et al (2007) Value from waste: struvite recovery at the city of Edmontons Gold Bar WWTP. Proc IWA spec Conf Mov Forw - wastewater biosolids sustain. pp 575–581

  • Britton A, Prasad R, Balzer B, Cubbage L (2009) Pilot testing and economic evaluation of struvite recovery from dewatering centrate at HRSD’s Nansemond WWTP. In: Proceedings of the international conference on nutrient recovery from wastewater streams. pp 193–202

  • Browers KE (2013) Technology Provider Presentations: Multiform Harvest Inc. In: WEF/IWA nutrient removal and recovery. Workshop a - making sence of extractive nutrient recovery. WEF and IWA, Vancouver, British Columbia, Canada

  • Cai L, Xiao H-R, Huang S-M, Li H, Zhou GT (2013) Solubilization of magnesium-bearing silicate minerals and the subsequent formation of glushinskite by Aspergillus niger. Geomicrobiol J 30:302–312

    Article  CAS  Google Scholar 

  • Çelen I, Buchanan JR, Burns RT, Bruce Robinson R, Raj Raman D (2007) Using a chemical equilibrium model to predict amendments required to precipitate phosphorus as struvite in liquid swine manure. Water Res 41:1689–1696

    Article  CAS  Google Scholar 

  • Cordell D, Drangert J, White S (2009) The story of phosphorus : global food security and food for thought. Glob Environ Chang 19:292–305. https://doi.org/10.1016/j.gloenvcha.2008.10.009

    Article  Google Scholar 

  • Cornel P, Schaum C (2009) Phosphorus recovery from wastewater: needs, technologies and costs. Water Sci Technol 59:1069–1076. https://doi.org/10.2166/wst.2009.045

    Article  CAS  Google Scholar 

  • Desmidt E, Ghyselbrecht K, Zhang Y, Pinoy L, van der Bruggen B, Verstraete W, Rabaey K, Meesschaert B (2015) Global phosphorus scarcity and full-scale P-recovery techniques: a review. Crit Rev Environ Sci Technol 45:336–384. https://doi.org/10.1080/10643389.2013.866531

    Article  CAS  Google Scholar 

  • Dewaele C (2015) NuReSys – from P recovery to fertilizer production. In: Eurpoean sustainable phosphorus conference. Berlin

  • Dockhorn T (2009) About the economy of phosphorus recovery. In: International conference on nutrient recovery from wastewater streams. IWA Publishing, London, pp 145–158

  • Doyle JD, Parsons SA (2002) Struvite formation, control and recovery. Water Res 36:3925–3940

    Article  CAS  Google Scholar 

  • Egle L, Rechberger H, Krampe J, Zessner M (2016) Phosphorus recovery from municipal wastewater : an integrated comparative technological , environmental and economic assessment of P recovery technologies. Sci Total Environ 571:522–542. https://doi.org/10.1016/j.scitotenv.2016.07.019

    Article  CAS  Google Scholar 

  • Fessler E (2013) Crystalactor: struvite recovery. In: nutrients removal and recovery: trends in resource recovery and use. WEF/IWA, Vancouver,BC, Canada

  • Forster CF (2003) Wastewater treatment and technology. Thomas Telford

  • Forstner G (2015) AirPrex™: biosolids treatment optimization process with the option of phosphate recovery. In: MWEA -Annual Biosolids Conference. Michigan. USA

  • Gaastra S, Schemen R, Bakker P, Bannink M (1998) Full scale phosphate recovery at sewage treatment plant Geestmerambacht, Holland. In: 1st international conference on phosphorus recovery for recycling, Warwick University, UK

  • González-Muñoz MT, De Linares C, Martínez-Ruiz F et al (2008) Ca–Mg kutnahorite and struvite production by Idiomarina strains at modern seawater salinities. Chemosphere 72:465–472

    Article  CAS  Google Scholar 

  • Goss T (2016) Struvite , turning a potential maintenance problem into an opportunity. In: NC WEA conference. Raleigh, NC, USA

  • Grini T (2018) Seawater as magnesium source for struvite crystallization in wastewater - an assessment of seawater as an alternative magnesium source of struvite production in wastewater treatment plants. Norwegian University of Science and Technology

  • Herzel H, Stemann J, Adam C (2015) P-Recovery Technologies and Products. Amsterdam

  • Howorth C, Wirtel S (2015) Nutrient recovery delivers economic and environmental sustainability , and helps you meet effluent and biosolids nutrient permits. Vancouver,BC, Canada

  • Huang H (2003) Pilot scale phosphorus recovery from anaerobic digester supernatant. The University of British Columbia, Vancouver

    Google Scholar 

  • Jaffer Y, Clark TA, Pearce P, Parsons SA (2002) Potential phosphorus recovery by struvite formation. Water Res 36:1834–1842

    Article  CAS  Google Scholar 

  • Jeanmaire N, Evans T (2001) Technico-economic feasibility of P-recovery from municipal wastewaters. Environ Technol 22:1355–1361

    Article  CAS  Google Scholar 

  • Jeyanayagam S, Hahn T, Fergen R, Boltz J (2012) Nutrient recovery , an emerging component of a sustainable biosolids management program. In: Miami. Florida, USA

    Google Scholar 

  • Johnston AE, Steén I (2000) Understanding phosphorus and its use in agriculture. http://www.fertilizerseurope.com/fileadmin/user_upload/publications/agriculture_publications/EFMA_Phosphorus_booklet__2_.pdf. Accessed 5 July 2017

  • Jones AG (2002) Crystallization process systems, first. Butterworth-Heinemann, Oxford

    Google Scholar 

  • Kabbe C (2015) Nutrient Recovery Developments. WaterWorld 30

  • Karabegovic L, Uldal M, Werker A, Morgan-Sagastume F (2013) Phosphorus recovery potential from a waste stream with high organic and nutrient contents via struvite precipitation. Environ Technol (United Kingdom) 34:871–883. https://doi.org/10.1080/09593330.2012.720718

    Article  CAS  Google Scholar 

  • Karunanithi R, Szogi AA, Bolan N, Naidu R, Loganathan P, Hunt PG, Vanotti MB, Saint CP, Ok YS, Krishnamoorthy S (2015) Phosphorus recovery and reuse from waste streams. In: Advances in agronomy. Elsevier, pp 173–250

  • Koch FA, Mavinic DS, Yonemitsu N, Britton AT (2009) Fluidized bed wastewater treatment. 2

  • Krom MD, Ben DA, Ingall ED et al (2014) Bacterially mediated removal of phosphorus and cycling of nitrate and sulfate in the waste stream of a “zero-discharge” recirculating mariculture system. Water Res 56:109–121

    Article  CAS  Google Scholar 

  • Kumar R, Pal P (2015) Assessing the feasibility of N and P recovery by struvite precipitation from nutrient-rich wastewater: a review. Environ Sci Pollut Res 22:17453–17464. https://doi.org/10.1007/s11356-015-5450-2

    Article  CAS  Google Scholar 

  • Langeveld CP, Ten Wolde KW (2013) Phosphate recycling in mineral fertiliser production. International Fertiliser Society

  • Le Corre KS, Valsami-Jones E, Hobbs P, Parsons SA (2009) Phosphorus recovery from wastewater by struvite crystallization: a review. Crit Rev Environ Sci Technol 39:433–477. https://doi.org/10.1080/10643380701640573

    Article  CAS  Google Scholar 

  • Li H, Yao Q-Z, Yu S-H, Huang YR, Chen XD, Fu SQ, Zhou GT (2017) Bacterially mediated morphogenesis of struvite and its implication for phosphorus recovery. Am Mineral 102:381–390

    Article  Google Scholar 

  • Li B, Boiarkina I, Yu W, Huang HM, Munir T, Wang GQ, Young BR (2018) Phosphorous recovery through struvite crystallization: challenges for future design. Sci Total Environ 648:1244–1256. https://doi.org/10.1016/j.scitotenv.2018.07.166

    Article  CAS  Google Scholar 

  • Liberman P, Schmidt S (2007) Chromium in the aquatic environment. https://www.google.ca/url?sa=t&rct=j&q=&esrc=s&source=web&cd=2&cad=rja&uact=8&ved=0CCcQFjABahUKEwj58Yfn6YjIAhXKXIgKHeYYAHU&url=http://www.civil.northwestern.edu/EHE/COURSES/CE-367/Presentations/Cr.ppt&usg=AFQjCNGKThnxPXhq7OWXBze77f85hfL35Q. Accessed 21 Sep 2015

  • Lodder R, Meulenkamp R (2011) Fosfaatterugwinning in communale afvalwaterzuiveringsinstallaties (recuperation of phosphate in communal wastewater treatment plants)

  • Mangin D, Klein JP (2004) Fluid dynamic concepts for a phosphate precipitation reactor design. Phosphorus Environ Technol Princ Appl London IWA Publ 358–400

  • Mayer BK, Baker LA, Boyer TH, Drechsel P, Gifford M, Hanjra MA, Parameswaran P, Stoltzfus J, Westerhoff P, Rittmann BE (2016) Total value of phosphorus recovery. Environ Sci Technol 50:6606–6620. https://doi.org/10.1021/acs.est.6b01239

    Article  CAS  Google Scholar 

  • Mihelcic JR, Fry LM, Shaw R (2011) Global potential of phosphorus recovery from human urine and feces. Chemosphere 84:832–839. https://doi.org/10.1016/j.chemosphere.2011.02.046

    Article  CAS  Google Scholar 

  • Moerman W, Carballa M, Vandekerckhove A, Derycke D, Verstraete W (2009) Phosphate removal in agro-industry: pilot- and full-scale operational considerations of struvite crystallization. Water Res 43:1887–1892. https://doi.org/10.1016/j.watres.2009.02.007

    Article  CAS  Google Scholar 

  • Morse GK, Brett SW, Guy JA, Lester JN (1998) Phosphorus removal and recovery technologies. Sci Total Environ 212:69–81. https://doi.org/10.1016/S0048-9697(97)00332-X

    Article  CAS  Google Scholar 

  • Mullin JW (2001) Crystallization, Fourth. Butterworth-Heinemann, Oxford

    Google Scholar 

  • Multiform Harvest (2018) Typical Installations — Multiform Harvest. http://www.multiformharvest.com/installations/. Accessed 24 Nov 2018

  • Munch EV, Barr K (2001) Controlled struvite crystallisation for removing phosphorus from anaerobic digester Sidestreams. Water Res 35:151–159

    Article  CAS  Google Scholar 

  • Nawa Y (2009) P-recovery in Japan-the PHOSNIX process. In: BALTIC 21-Phosphorus Recycling and Good Agricultural Management Practice Symposium. Berlin, Germany

  • Nieminen J (2010) Phosphorus recovery and recycling from municipal wastewater sludge. Aalto University

  • NuReSys (2016) NuReSys: recovers natures essentials. http://www.nuresys.be/. Accessed 2 Jun 2017

  • Oleszkiewicz J (2015) Options for improved nutrient removal and recovery from municipal wastwater in the Canadian context

  • Ostara (2018) Technology - Ostara nutrient recovery. http://ostara.com/nutrient-management-solutions/. Accessed 24 Nov 2018

  • Paques (2016) PHOSPAQ. http://en.paques.nl/products/other/phospaq. Accessed 17 Jun 2016

  • Pedemonte DC, Frison N, Tayà C, et al (2016) Chemical and biological processes for nutrients removal and recovery. In: del Río ÁV, Gómez JLC, Corral AM (eds) Technologies for the treatment and recovery of nutrients from industrial wastewater. IGI Global, pp 76–111

  • Peng L, Dai H, Wu Y, Peng Y, Lu X (2018a) A comprehensive review of phosphorus recovery from wastewater by crystallization processes. Chemosphere 197:768–781. https://doi.org/10.1016/j.chemosphere.2018.01.098

    Article  CAS  Google Scholar 

  • Peng L, Dai H, Wu Y, Peng Y, Lu X (2018b) A comprehensive review of the available media and approaches for phosphorus recovery from wastewater. Water Air Soil Pollut 229. https://doi.org/10.1007/s11270-018-3706-4

  • Picavet M (2013) Phosphorus removal in WWTPs: the ANPHOS process. Colsen Group, Hulst

    Google Scholar 

  • Piekema P, Giesen A (2001) Phosphate recovery by the crystallisation process: experience and developments. AL Amersfoort, The Netherlands

    Google Scholar 

  • P-Rex (2015) AirPrex® struvite crystallization in sludge. http://p-rex.eu/uploads/media/PREX_Factsheet_AIRPREX.pdf. Accessed 17 Jun 2016

  • Prywer J, Torzewska A (2010) Biomineralization of struvite crystals by Proteus mirabilis from artificial urine and their mesoscopic structure. Cryst Res Technol 45:1283–1289

    Article  CAS  Google Scholar 

  • Quintana M, Colmenarejo MF, Barrera J, García G, García E, Bustos A (2004) Use of a byproduct of magnesium oxide production to precipitate phosphorus and nitrogen as struvite from wastewater treatment liquors. J Agric Food Chem 52:294–299. https://doi.org/10.1021/jf0303870

    Article  CAS  Google Scholar 

  • Quist-Jensen CA, Jørgensen MK, Christensen ML (2016) Treated seawater as a magnesium source for phosphorous recovery from wastewater—a feasibility and cost analysis. Membranes (Basel) 6. https://doi.org/10.3390/membranes6040054

  • Remy M, Driessen W, Hendrickx T, Haarhuis R (2013) Recovery of phosphorus by formation of struvite with the PHOSPAQ process. In: 18th European Biosolids and Organic Resources Conference RECOVERY. Manchester, UK

  • Royal HaskoningDHV (2017) The Crystalactor: efficient treatment without waste. https://www.royalhaskoningdhv.com/en/crystalactor/plants. Accessed 24 Nov 2018

  • Sartorius C, von Horn J, Tettenborn F (2012) Phosphorus recovery from wastewater—expert survey on present use and future potential. Water Environ Res 84:313–322. https://doi.org/10.2175/106143012X13347678384440

    Article  CAS  Google Scholar 

  • Schipper WJ, Klapwijk A, Potjer B et al (2001) Phosphate recycling in the phosphorus industry. Environ Technol 22:1337–1345. https://doi.org/10.1080/09593330.2001.9619173

    Article  CAS  Google Scholar 

  • Shu L, Schneider P, Jegatheesan V, Johnson J (2006) An economic evaluation of phosphorus recovery as struvite from digester supernatant. Bioresour Technol 97:2211–2216. https://doi.org/10.1016/j.biortech.2005.11.005

    Article  CAS  Google Scholar 

  • Sikosana M, Randall DG, Blottnitz H von (2015) A technological, economic and social exploration of phosphate recovery from centralised sewage treatment in a transitioning economy context

  • Sinha A, Singh A, Kumar S, Khare SK, Ramanan A (2014) Microbial mineralization of struvite: a promising process to overcome phosphate sequestering crisis. Water Res 54:33–43

    Article  CAS  Google Scholar 

  • Soares A, Veesam M, Simoes F, Wood E, Parsons SA, Stephenson T (2014) Bio-struvite: a new route to recover phosphorus from wastewater. CLEAN–Soil, Air, Water 42:994–997

    Article  CAS  Google Scholar 

  • Spargimino E (2014) Side stream nutrient considerations and nutrient. In: CDM Smith. https://static1.squarespace.com/static/54806478e4b0dc44e1698e88/t/54860c91e4b0e1b1e096bcd7/1418071185084/Spargimino-SidestreamNutrients%26Harvesting-23Oct2014.pdf. Accessed 1 Jun 2017

  • Stratful I, Brett S, Scrimshaw MB, Lester JN (1999) Biological phosphorus removal, its role in phosphorus recycling. Environ Technol 20:681–695. https://doi.org/10.1080/09593332008616863

    Article  CAS  Google Scholar 

  • Tarragó E, Puig S, Ruscalleda M, Balaguer MD, Colprim J (2016) Controlling struvite particles’ size using the up-flow velocity. Chem Eng J 302:819–827. https://doi.org/10.1016/j.cej.2016.06.036

    Article  CAS  Google Scholar 

  • Ueno Y (2004) Full scale struvite recovery in Japan. In: Valsami-Jones E (ed) Phosphorus Environ Technol Princ Appl. IWA Publ London

  • Ueno Y, Fujii M (2001) Three years experience of operating and selling recovered struvite from full-scale plant. Environ Technol 22:1373–1381. https://doi.org/10.1080/09593332208618196

    Article  CAS  Google Scholar 

  • Valsami-Jones E (2004) Phosphorus in environmental technologies: principles and applications. IWA Publishing, London

    Google Scholar 

  • Vaneeckhaute C, Lebuf V, Michels E, Belia E, Vanrolleghem PA, Tack FMG, Meers E (2017) Nutrient recovery from digestate: systematic technology review and product classification. Waste Biomass Valoriz 8:21–40. https://doi.org/10.1007/s12649-016-9642-x

    Article  CAS  Google Scholar 

  • Xavier LD, Cammarota MC, Yokoyama L, Volschan I (2014) Study of the recovery of phosphorus from struvite precipitation in supernatant line from anaerobic digesters of sludge. Water Sci Technol Water Supply 14:751–757. https://doi.org/10.2166/ws.2014.033

    Article  CAS  Google Scholar 

  • Ye ZL, Chen SH, Lu M, Shi JW, Lin LF, Wang SM (2011) Recovering phosphorus as struvite from the digested swine wastewater with bittern as a magnesium source. Water Sci Technol 64:334–340. https://doi.org/10.2166/wst.2011.720

    Article  CAS  Google Scholar 

  • Ye X, Ye Z-L, Lou Y, Pan S, Wang X, Wang MK, Chen S (2016) A comprehensive understanding of saturation index and upflow velocity in a pilot-scale fluidized bed reactor for struvite. Powder Technol 295:16–26. https://doi.org/10.1016/j.powtec.2016.03.022

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shayok Ghosh.

Additional information

Responsible editor: Bingcai Pan

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix. Terminologies

Appendix. Terminologies

Footprint: The volume of the reactors required for different technologies.

Damage Unit: Egle et al. (2016) estimated “Damage Unit” using Eq. 1.

$$ {C}_{DU_P}=\frac{\sum_{i=1}^n\frac{C_i}{C_i^{\mathrm{reference}}}}{C_p} $$
(1)

where \( {C}_{DU_P} \) = damage unit concentration with respect to P content, Ci = concentration of a heavy metal in the product, Cireference = concentration of a heavy metal in the compost class A+ as a reference material, and CP = concentration of phosphorus in the product.

Reference system: Egle et al. (2016) defines a reference WWTP for the comparison of the performance of various technologies. A WWTP with a load of 100,000 of population equivalents which is equivalent to 65,700 kg P/year, P-removal by iron dosing or biological P-removal and sludge management processes which include thickening, anaerobic digestion, dewatering with the help of polymers, and co-incineration of sludge has been defined as a reference system. A detail description of this reference WWTP has been delineated in Egle et al. (2016).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ghosh, S., Lobanov, S. & Lo, V.K. An overview of technologies to recover phosphorus as struvite from wastewater: advantages and shortcomings. Environ Sci Pollut Res 26, 19063–19077 (2019). https://doi.org/10.1007/s11356-019-05378-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-019-05378-6

Keywords

Navigation