Skip to main content

Advertisement

Log in

Lichen Parmelia sulcata mediated synthesis of gold nanoparticles: an eco-friendly tool against Anopheles stephensi and Aedes aegypti

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

The gold nanoparticles (AuNPs) were synthesized using the lichen Parmelia sulcata extract (PSE) and characterized. The peaks of ultraviolet spectrophotometer and Fourier transmission infrared confirmed the formation of nanoparticles and the bioactive compounds of the lichen being responsible for reducing and capping of the particles. The face-centered cubic particles were determined by XRD peaks at 111, 200, 220, and 311. The elemental composition and spherical shape of AuNPs were confirmed by energy-dispersive spectroscopy and transmission electron microscopy. The average particle size is 54 nm, and the zeta potential − 18 was ascertained by dynamic light scattering. The potential effect of synthesized nanoparticles and lichen extracts was evaluated for antioxidant bioassays like DPPH and H2O2 and tested for mosquitocidal activity against Anopheles stephensi. Results showed that the lichen extract and AuNPs have the capability to scavenge the free radicals with the IC50 values of DPPH being 1020 and 815 μg/ml and the IC50 values of H2O2 being 694 and 510 μg/ml, respectively. The mosquitocidal experimental results in this study showed the inhibition of A. stephensi and A. aegypti against the larvae (I–IV instar), pupae, adult, and egg hatching. On comparison, A. stephensi showed effective inhibition than A. aegypti even at low concentration. Based on the obtained results, gold nanoparticles synthesized using PSE showed an excellent mosquitocidal effect against Anopheles stephensi.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Agarwal R, Jayaraman G, Anand S, Marimuthu P (2006) Assessing respiratory morbidity through pollution status and meteorological conditions for Delhi. Environ Monit Assess 114(1–3):489–504. https://doi.org/10.1007/s10661-006-4935-3

    Article  CAS  Google Scholar 

  • Amerasan D, Murugan K, Panneerselvam C, Kanagaraju N, Kovendan K, Kumar PM (2015) Bioefficacy of Morinda tinctoria and Pongamia glabra plant extracts against the malaria vector Anopheles stephensi (Diptera: Culicidae). J Entomol Acarol Res 47(1):31–40. https://doi.org/10.4081/jear.2015.1986

    Article  Google Scholar 

  • Anand K, Gengan RM, Phulukdaree A, Chuturgoon A (2015) Agroforestry waste Moringa oleifera petals mediated green synthesis of gold nanoparticles and their anti-cancer and catalytic activity. J Ind Eng Chem 21:1105–1111. https://doi.org/10.1016/j.jiec.2014.05.021

    Article  CAS  Google Scholar 

  • Bala N, Saha S, Chakraborty M, Maiti M, Das S, Basu R, Nandy P (2015) Green synthesis of zinc oxide nanoparticles using Hibiscus subdariffa leaf extract: effect of temperature on synthesis, anti-bacterial activity and anti-diabetic activity. RSC Adv 5(7):4993–5003

    Article  CAS  Google Scholar 

  • Benelli G (2015) Research in mosquito control: current challenges for a brighter future. Parasitol Res 114(8):2801–2805. https://doi.org/10.1007/s11356-017-8820-0

    Article  CAS  Google Scholar 

  • Benelli G, Maggi F, Pavela R, Murugan K, Govindarajan M, Vaseeharan B, Petrelli R, Cappellacci L, Kumar S, Hofer A, Youssefi MR (2017a) Mosquito control with green nanopesticides: towards the One Health approach? A review of non-target effects. Environ Sci Pollut Res 25:1–23. https://doi.org/10.1007/s11356-017-8482-y

    Article  CAS  Google Scholar 

  • Benelli G, Rajeswary M, Vijayan P, Senthilmurugan S, Alharbi NS, Kadaikunnan S, Khaled JM, Govindarajan M (2017b) Boswellia ovalifoliolata (Burseraceae) essential oil as an eco-friendly larvicide? Toxicity against six mosquito vectors of public health importance, non-target mosquito fishes, backswimmers, and water bugs. Environ Sci Pollut Res 25:1–8. https://doi.org/10.1007/s11356-017-9752-4

    Article  CAS  Google Scholar 

  • Benelli G, Kadaikunnan S, Alharbi NS, Govindarajan M (2018) Biophysical characterization of Acacia caesia-fabricated silver nanoparticles: effectiveness on mosquito vectors of public health relevance and impact on non-target aquatic biocontrol agents. Environ Sci Pollut Res 25(11):10228–10242. https://doi.org/10.1039/C4RA12784F

    Article  CAS  Google Scholar 

  • Blois MS (1958) Antioxidant determinations by the use of a stable free radical. Nature 181(4617):1199–1200. https://doi.org/10.1038/1811199a0

    Article  CAS  Google Scholar 

  • Bowers WS, Sener B, Evans PH, Bingol F, Erdogan I (1995) Activity of Turkish medicinal plants against mosquitoes Aedes aegypti and Anopheles gambiae. Int J Trop Insect Sci 16(3–4):339–341

    Article  Google Scholar 

  • Crespo A, Divakar PK, Argüello A, Gasca C, Hawksworth DL (2004) Molecular studies on Punctelia species of the Iberian Peninsula, with an emphasis on specimens newly colonizing Madrid. Lichenologist 36:299–308. https://doi.org/10.1017/S0024282904014434

    Article  Google Scholar 

  • Dinesh D, Murugan K, Madhiyazhagan P, Panneerselvam C, Kumar PM, Nicoletti M, Jiang W, Benelli G, Chandramohan B, Suresh U (2015) Mosquitocidal and antibacterial activity of green-synthesized silver nanoparticles from Aloe vera extracts: towards an effective tool against the malaria vector Anopheles stephensi? Parasitol Res 114(4):1519–1529. https://doi.org/10.1007/s00436-015-4336-z

    Article  Google Scholar 

  • Diwakar Y, Chitra V, Evelyn Sharon S (2018) Study of Parmelia perlata for its potential as anti-inflammatory and antiarthritic agent using in vitro model. Asian J Pharm Clin Res 12(1):2019. https://doi.org/10.22159/ajpcr.2019.v12i1.28479

  • El-Batal AI, ElKenawy NM, Yassin AS, Amin MA (2015) Laccase production by Pleurotus ostreatus and its application in synthesis of gold nanoparticles. Biotechnol Rep 5:31–39. https://doi.org/10.1016/j.btre.2014.11.001

    Article  Google Scholar 

  • Faucon F, Gaude T, Dusfour I, Navratil V, Corbel V, Juntarajumnong W, Girod R, Poupardin R, Boyer F, Reynaud S, David JP (2017) In the hunt for genomic markers of metabolic resistance to pyrethroids in the mosquito Aedes aegypti:. an integrated next-generation sequencing approach. PLoS Negl Trop Dis 11(4):e0005526. https://doi.org/10.1371/journal.pntd.0005526

    Article  CAS  Google Scholar 

  • Fernández-Moriano C, Divakar PK, Crespo A, Gómez-Serranillos MP (2015) Neuroprotective activity and cytotoxic potential of two Parmeliaceae lichens: identification of active compounds. Phytomedicine 22(9):847–855. https://doi.org/10.1016/j.phymed.2015.06.005

    Article  CAS  Google Scholar 

  • Flores-Céspedes F, Martínez-Domínguez GP, Villafranca-Sánchez M, Fernández-Pérez M (2015) Preparation and characterization of azadirachtin alginate-biosorbent based formulations: water release kinetics and photodegradation study. J Agric Food Chem 63(38):8391–8398. https://doi.org/10.1021/acs.jafc.5b03255

    Article  CAS  Google Scholar 

  • Galloway DJ, Elix JA (1983) The lichen genera Parmelia Ach. and Punctelia Krog, in Australasia. N Z J Bot 21(4):397–420. https://doi.org/10.1080/0028825X.1983.10428572

    Article  Google Scholar 

  • Gleason FH, Gadd GM, Pitt JI, Larkum AW (2017) The roles of endolithic fungi in bioerosion and disease in marine ecosystems. I General Concepts Mycol 8(3):205–215. https://doi.org/10.1080/21501203.2017.1352049

    Article  CAS  Google Scholar 

  • Govindarajan M, Khater HF, Panneerselvam C, Benelli G (2016a) One-pot fabrication of silver nanocrystals using Nicandra physalodes: a novel route for mosquito vector control with moderate toxicity on non-target water bugs. Res Vet Sci 107:95–101. https://doi.org/10.1016/j.rvsc.2016.05.017

    Article  CAS  Google Scholar 

  • Govindarajan M, Rajeswary M, Hoti SL, Bhattacharyya A, Benelli G (2016b) Eugenol, α-pinene and β-caryophyllene from Plectranthus barbatus essential oil as eco-friendly larvicides against malaria, dengue and Japanese encephalitis mosquito vectors. Parasitol Res 115(2):807–815. https://doi.org/10.1007/s00436-015-4809-0

    Article  Google Scholar 

  • Hebbalkar DS, Hebbalkar GD, Sharma RN, Joshi VS, Bhat VS (1992) Mosquito repellent activity of oils from Vitex negundo Linn. leaves. Indian J Med Res 95:200–203

    CAS  Google Scholar 

  • Jeyabalan D, Arul N, Thangamathi P (2003) Studies on effects of Pelargonium citrosa leaf extracts on malarial vector, Anopheles stephensi Liston. Bioresour Technol 89(2):185–189

    Article  CAS  Google Scholar 

  • Khader SZ, Ahmed SS, Venkatesh KP, Chinnaperumal K, Nayaka S (2018) Larvicidal potential of selected indigenous lichens against three mosquito species–Culex quinquefasciatus, Aedes aegypti and Anopheles stephensi. Chin Herbal Med 10(2):152–156. https://doi.org/10.1007/s00436-012-2923-9

    Article  Google Scholar 

  • Kuppusamy P, Ichwan SJ, Parine NR, Yusoff MM, Maniam GP, Govindan N (2015) Intracellular biosynthesis of Au and Ag nanoparticles using ethanolic extract of Brassica oleracea L. and studies on their physicochemical and biological properties. J Environ Sci 29:151–157. https://doi.org/10.1016/j.jes.2014.06.050

    Article  CAS  Google Scholar 

  • Lallawmawma H, Sathishkumar G, Sarathbabu S, Ghatak S, Sivaramakrishnan S, Gurusubramanian G, Kumar NS (2015) Synthesis of silver and gold nanoparticles using Jasminum nervosum leaf extract and its larvicidal activity against filarial and arboviral vector Culex quinquefasciatus Say (Diptera: Culicidae). Environ Sci Pollut Res 22(22):17753–17768. https://doi.org/10.1007/s11356-015-5001-x

    Article  CAS  Google Scholar 

  • Loppi S (2014) Lichens as sentinels for air pollution at remote alpine areas (Italy). Environ Sci Pollut Res 21(4):2563–2571. https://doi.org/10.1007/s11356-013-2181-0

    Article  CAS  Google Scholar 

  • Mata R, Bhaskaran A, Sadras SR (2016) Green-synthesized gold nanoparticles from Plumeria alba flower extract to augment catalytic degradation of organic dyes and inhibit bacterial growth. Particuology 24:78–86. https://doi.org/10.1016/j.partic.2014.12.014

    Article  CAS  Google Scholar 

  • Mathalaimuthu B, Shanmugam D, Kovendan K, Kadarkarai M, Jayapal G, Benelli G (2017) Coleus aromaticus leaf extract fractions: a source of novel ovicides, larvicides and repellents against Anopheles, Aedes and Culex mosquito vectors? Process Saf Environ Prot 106:23–33. https://doi.org/10.1007/s00436-013-3557-2

    Article  CAS  Google Scholar 

  • Mie R, Samsudin MW, Din LB, Ahmad A, Ibrahim N, Adnan SN (2014) Synthesis of silver nanoparticles with antibacterial activity using the lichen Parmotrema praesorediosum. Int J Nanomedicine 9:121. https://doi.org/10.2147/IJN.S52306

    Article  CAS  Google Scholar 

  • Mirzaei H, Darroudi M (2017) Zinc oxide nanoparticles: biological synthesis and biomedical applications. Ceram Int 43(1):907–914. https://doi.org/10.1016/j.ceramint.2016.10.051

    Article  CAS  Google Scholar 

  • Murthy HN, Joseph KS, Payamalle S, Dalawai D, Ganapumane V (2017) Chemical composition, larvicidal and antioxidant activities of latex from Garcinia morella (Gaertn.) Desr. J Parasit Dis 41(3):666–670. https://doi.org/10.1007/s12639-016-0863-5

    Article  Google Scholar 

  • Murugan K, Kumar PM, Kovendan K, Amerasan D, Subrmaniam J, Hwang JS (2012) Larvicidal, pupicidal, repellent and adulticidal activity of Citrus sinensis orange peel extract against Anopheles stephensi, Aedes aegypti and Culex quinquefasciatus (Diptera: Culicidae). Parasitol Res 111(4):1757–1769. https://doi.org/10.1007/s00436-012-3021-8

    Article  Google Scholar 

  • Murugan K, Samidoss CM, Panneerselvam C, Higuchi A, Roni M, Suresh U, Chandramohan B, Subramaniam J, Madhiyazhagan P, Dinesh D, Rajaganesh R (2015) Seaweed-synthesized silver nanoparticles: an eco-friendly tool in the fight against Plasmodium falciparum and its vector Anopheles stephensi? Parasitol Res 114(11):4087–4097. https://doi.org/10.1007/s00436-015-4638-1

    Article  Google Scholar 

  • Murugan K, Benelli G, Panneerselvam C, Subramaniam J, Jeyalalitha T, Dinesh D, Nicoletti M, Hwang JS, Suresh U, Madhiyazhagan P (2015a) Cymbopogon citratus-synthesized gold nanoparticles boost the predation efficiency of copepod Mesocyclops aspericornis against malaria and dengue mosquitoes. Exp Parasitol 153:129–138. https://doi.org/10.1016/j.exppara.2015.03.017

    Article  CAS  Google Scholar 

  • Murugan K, Panneerselvam C, Samidoss CM, Madhiyazhagan P, Suresh U, Roni M, Chandramohan B, Subra maniam J, Dinesh D, Rajaganesh R, Paulpandi M (2016a) In vivo and in vitro effectiveness of Azadirachta indica-synthesized silver nanocrystals against Plasmodium berghei and Plasmodium falciparum, and their potential against malaria mosquitoes. Res Vet Sci 106:14–22. https://doi.org/10.1016/j.rvsc.2016.03.001

    Article  Google Scholar 

  • Murugan K, Roni M, Panneerselvam C, Suresh U, Rajaganesh R, Aruliah R, Mahyoub JA, Trivedi S, Rehman H, Al-Aoh HA, Kumar S (2016b) Sargassum wightii-synthesized ZnO nanoparticles reduce the fitness and reproduction of the malaria vector Anopheles stephensi and cotton bollworm Helicoverpa armigera. Physiol Mol Plant Pathol 101:202–213

    Article  CAS  Google Scholar 

  • Odimegwu DC, Ejikeugwu C, Esimone CC (2015) Lichen secondary metabolites as possible antiviral agents. In: Lichen secondary metabolites. Springer, Cham, pp 165–177. https://doi.org/10.1007/978-3-319-13374-4

    Chapter  Google Scholar 

  • Ovais M, Raza A, Naz S, Islam NU, Khalil AT, Ali S, Khan MA, Shinwari ZK (2017) Current state and prospects of the phytosynthesized colloidal gold nanoparticles and their applications in cancer theranostics. Appl Microbiol Biotechnol 101(9):3551–3565. https://doi.org/10.1007/s00253-017-8250-4

    Article  CAS  Google Scholar 

  • Paluszczak J, Kleszcz R, Studzińska-Sroka E, Krajka-Kuźniak V (2018) Lichen-derived caperatic acid and physodic acid inhibit Wnt signaling in colorectal cancer cells. Mol Cell Biochem 441(1–2):109–124. https://doi.org/10.1007/s11010-017-3178-7

    Article  CAS  Google Scholar 

  • Pancharoen C, Kulwichit W, Tantawichien T, Thisyakorn U, Thisyakorn C (2002) Dengue infection: a global concern. J Med Assoc Thail 85:25–33

    Google Scholar 

  • Paoli L, Munzi S, Guttová A, Senko D, Sardella G, Loppi S (2015) Lichens as suitable indicators of the biological effects of atmospheric pollutants around a municipal solid waste incinerator (S Italy). Ecol Indic 52:362–370. https://doi.org/10.1016/j.wasman.2015.04.033

    Article  CAS  Google Scholar 

  • Park JH, Gurunathan S, Choi YJ, Han JW, Song H, Kim JH (2017) Silver nanoparticles suppresses brain-derived neurotrophic factor-induced cell survival in the human neuroblastoma cell line SH-SY5Y. J Ind Eng Chem 47:62–73. https://doi.org/10.1016/j.jiec.2016.11.015

    Article  CAS  Google Scholar 

  • Pavela R (2009) Larvicidal effects of some Euro-Asiatic plants against Culex quinquefasciatus Say larvae (Diptera: Culicidae). Parasitol Res 105(3):887–892. https://doi.org/10.1007/s00436-009-1511-0

    Article  Google Scholar 

  • Pavela R (2014) Acute, synergistic and antagonistic effects of some aromatic compounds on the Spodoptera littoralis Boisd. (Lep., Noctuidae) larvae. Ind Crop Prod 60:247–258. https://doi.org/10.1007/s00436-015-4614-9

    Article  CAS  Google Scholar 

  • Pavela R, Benelli G (2016) Ethnobotanical knowledge on botanical repellents employed in the African region against mosquito vectors–a review. Exp Parasitol 167:103–108. https://doi.org/10.1016/j.exppara.2016.05.010

    Article  Google Scholar 

  • Phukan S, Kalita MC (2005) Phytopesticidal and repellent efficacy of Litsea salicifolia (Lauraceae) against Aedes aegypti and Culex quinquefasciatus. Indian J Exp Biol 43:472–474

    CAS  Google Scholar 

  • Pushpanathan M (2016) Era of antimicrobials: winning microbes. J Bacteriol Mycol 2(2):00021. https://doi.org/10.15406/jbmoa.2016.02.00021

    Article  Google Scholar 

  • Rajkumar S, Jebanesan A (2002) Oviposition attractancy of Solanum aerianthum leaf extract for Culex quinquefasciatus. J Exp Zool India 5(2):221–224

    Google Scholar 

  • Ristić S, Ranković B, Kosanić M, Stanojković T, Stamenković S, Vasiljević P, Manojlović I, Manojlović N (2016) Phytochemical study and antioxidant, antimicrobial and anticancer activities of Melanelia subaurifera and Melanelia fuliginosa lichens. J Food Sci Technol 53(6):2804–2816. https://doi.org/10.1007/s13197-016-2255-3

    Article  CAS  Google Scholar 

  • Roni M, Murugan K, Panneerselvam C, Subramaniam J, Nicoletti M, Madhiyazhagan P, Dinesh D, Suresh U, Khater HF, Wei H, Canale A (2015) Characterization and biotoxicity of Hypnea musciformis-synthesized silver nanoparticles as potential eco-friendly control tool against Aedes aegypti and Plutella xylostella. Ecotoxicol Environ Saf 121:31–38. https://doi.org/10.1016/j.ecoenv.2015.07.005

    Article  CAS  Google Scholar 

  • Ruch RJ, Cheng SJ, Klaunig JE (1989) Prevention of cytotoxicity and inhibition of intercellular communication by antioxidant catechins isolated from Chinese green tea. Carcinogenesis 10(6):1003–1008

    Article  CAS  Google Scholar 

  • Selvi BC, Madhavan J, Santhanam A (2016) Cytotoxic effect of silver nanoparticles synthesized from Padina tetrastromatica on breast cancer cell line. Adv Nat Sci Nanosci Nanotechnol 7(3):035015. https://doi.org/10.1088/issn.2043-6262

    Article  Google Scholar 

  • Shrestha G, El-Naggar AM, St Clair LL, O'neill KL (2015) Anticancer activities of selected species of North American lichen extracts. Phytother Res 29(1):100–107. https://doi.org/10.1002/ptr.5233

    Article  Google Scholar 

  • Singh P, Kim YJ, Zhang D, Yang DC (2016) Biological synthesis of nanoparticles from plants and microorganisms. Trends Biotechnol 34(7):588–599. https://doi.org/10.1016/j.tibtech.2016.02.006

    Article  CAS  Google Scholar 

  • Subramaniam J, Murugan K, Panneerselvam C, Kovendan K, Madhiyazhagan P, Dinesh D, Kumar PM, Chandramohan B, Suresh U, Rajaganesh R, Alsalhi MS (2016) Multipurpose effectiveness of Couroupita guianensis-synthesized gold nanoparticles: high antiplasmodial potential, field efficacy against malaria vectors and synergy with Aplocheilus lineatus predators. Environ Sci Pollut Res 23(8):7543–7558. https://doi.org/10.1007/s11356-015-6007-0

    Article  CAS  Google Scholar 

  • Suman TY, Rajasree SR, Ramkumar R, Rajthilak C, Perumal P (2014) The green synthesis of gold nanoparticles using an aqueous root extract of Morinda citrifolia L. Spectrochim Acta A Mol Biomol Spectrosc 118:11–16. https://doi.org/10.1016/j.saa.2013.08.066

    Article  CAS  Google Scholar 

  • Taylor T (1836) Lichens. In: Mackay JT (ed) Flora Hibernica, Dublin, p 279. https://doi.org/10.2307/1222483

  • Vanga NR, Kota A, Sistla R, Uppuluri M (2017) Synthesis and anti-inflammatory activity of novel triazole hybrids of (+)-usnic acid, the major dibenzofuran metabolite of the lichen Usnea longissima. Mol Divers 21(2):273–282. https://doi.org/10.1007/s11030-016-9716-5

    Article  CAS  Google Scholar 

  • World Health Organization. (2016) World malaria report 2015. World Health Organization. Jan 30. ISBN: 978 92 4 156515 8

  • Zheng Y, Lai L, Liu W, Jiang H, Wang X (2017) Recent advances in biomedical applications of fluorescent gold nanoclusters. Adv Colloid Interf Sci 242:1–6. https://doi.org/10.1016/j.cis.2017.02.005

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ranganathan Babujanarthanam.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Responsible editor: Philippe Garrigues

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(PDF 504 kb)Mie

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gandhi, A.D., Murugan, K., Umamahesh, K. et al. Lichen Parmelia sulcata mediated synthesis of gold nanoparticles: an eco-friendly tool against Anopheles stephensi and Aedes aegypti. Environ Sci Pollut Res 26, 23886–23898 (2019). https://doi.org/10.1007/s11356-019-05726-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-019-05726-6

Keywords

Navigation