Skip to main content
Log in

Community structure and function of microbiomes in polluted stretches of river Yamuna in New Delhi, India, using shotgun metagenomics

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

This article has been updated

Abstract

The large population residing in the northern region of India surrounding Delhi mostly depends on water of River Yamuna, a tributary of mighty Ganga for agriculture, drinking and various religious activities. However, continuous anthropogenic activities mostly due to pollution mediated by rapid urbanization and industrialization have profoundly affected river microflora and their function thus its health. In this study, potential of whole-genome metagenomics was exploited to unravel the novel consortia of microbiome and their functional potential in the polluted sediments of the river at Delhi. Analysis of high-quality metagenome data from Illumina NextSeq500 revealed substantial differences in composition of microbiota at different sites dominated by Proteobacteria, Bacteroidetes, Firmicutes, Actinobacteria and Chloroflexi phyla. The presence of highly dominant anaerobic bacteria like Dechloromonas aromatica (benzene reducing and denitrifying), Rhodopseudomonas palustris (organic matter reducing), Syntrophus aciditrophicus (fatty acid reducing) and Syntrophobacter fumaroxidans (sulphate reducing) in the polluted river Yamuna signifies the impact of unchecked pollution in declining health of the river ecosystem. A decline in abundance of phages was also noticed along the downstream river Yamuna. Mining of mycobiome reads uncovered plethora of fungal communities (i.e. Nakaseomyces, Aspergillus, Schizosaccharomyces and Lodderomyces) in the polluted stretches due to the availability of higher organic carbon and total nitrogen (%) could be decoded as promising bioindicators of river trophic status. Pathway analysis through KEGG revealed higher abundance of genes involved in energy metabolism (nitrogen and sulphur), methane metabolism, degradation of xenobiotics (Nitrotoluene, Benzoate and Atrazine), two-component system (atoB, cusA and silA) and membrane transport (ABC transporters). Catalase-peroxidase and 4-hydroxybenzoate 3-monooxygenase were the most enriched pollution degrading enzymes in the polluted study sites of river Yamuna. Overall, our results provide crucial insights into microbial dynamics and their function in response to high pollution and could be insightful to the ongoing remediation strategies to clean river Yamuna.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

The datasets presented in this study can be found in online repositories of SRA at NCBI (SRS4592195, SRS4592470 and SRS4600533).

Change history

  • 09 July 2022

    1st Author name tagging correction.

References

  • Abatenh E, Gizaw B, Tsegaye Z, Wassie M (2017) The role of microorganisms in bioremediation-a review. Open Journal of Environmental Biology 2:38–46

    Article  Google Scholar 

  • Abia ALK, Alisoltani A, Keshri J, Ubomba-Jaswa E (2018) Metagenomic analysis of the bacterial communities and their functional profiles in water and sediments of the Apies River, South Africa, as a function of land use. Sci Total Environ 616:326–334

    Article  Google Scholar 

  • Ahmad T, Gupta G, Sharma A, Kaur B, El-Sheikh MA, Alyemeni MN (2021) Metagenomic analysis exploring taxonomic and functional diversity of bacterial communities of a Himalayan urban fresh water lake. PLoS ONE 16:e0248116

    Article  CAS  Google Scholar 

  • Alves LF, Westmann CA, Lovate GL, de Siqueira GMV, Borelli TC, Guazzaroni M-E (2018) Metagenomic approaches for understanding new concepts in microbial science.  Int J genomics 2018

  • APHA AWWA WEF (2012a) Standard methods for the examination of water and wastewater, 22nd Edn. https://doi.org/10.2105/AJPH.51.6.940-a

  • APHA AWWA WEF (2012b) Standard methods for the examination of water and wastewater, 22nd Edn. https://doi.org/10.2105/AJPH.51.6.940-a

  • Arvanitidou M, Kanellou K, Vagiona DG (2005) Diversity of Salmonella spp. and fungi in northern Greek rivers and their correlation to fecal pollution indicators. Environ Res 99:278–284

    Article  CAS  Google Scholar 

  • Bansal N, Kanwar SS (2013) Peroxidase (s) in environment protection. Sci World J 2013. https://doi.org/10.1155/2013/714639

  • Behera BK, Sahu P, Rout AK, Parida PK, Sarkar DJ, Kaushik NK, Rao AR, Rai A, Das BK, Mohapatra T (2021) Exploring microbiome from sediments of River Ganga using a metagenomic approach. Aquat Ecosyst Health Manag 24(4):12–22

    Article  Google Scholar 

  • Behera BK, Chakraborty HJ, Patra B, Rout AK, Dehury B, Das BK, Sarkar DJ, Parida PK, Raman RK, Rao AR (2020a) Metagenomic analysis reveals bacterial and fungal diversity and their bioremediation potential from sediments of river Ganga and Yamuna in India. Front Microbiol 11:2531. https://doi.org/10.3389/fmicb.2020.556136

    Article  Google Scholar 

  • Behera BK, Patra B, Chakraborty HJ, Sahu P, Rout AK, Sarkar DJ, Parida PK, Raman RK, Rao AR, Rai A, Das BK, Jena J, Mohapatra T (2020b) Metagenome analysis from the sediment of river Ganga and Yamuna: In search of beneficial microbiome. PLoS ONE 15.https://doi.org/10.1371/journal.pone.0239594

  • Bombaywala S, Purohit HJ, Dafale NA (2021) Mobility of antibiotic resistance and its co-occurrence with metal resistance in pathogens under oxidative stress. J Environ Manag 297:113315

    Article  CAS  Google Scholar 

  • Buchfink B, Xie C, Huson DH (2015) Fast and sensitive protein alignment using DIAMOND. Nat Methods 12:59–60. https://doi.org/10.1038/nmeth.3176

    Article  CAS  Google Scholar 

  • Cabral L, Noronha MF, de Sousa STP, Lacerda-Júnior GV, Richter L, Fostier AH, Andreote FD, Hess M, de Oliveira VM (2019) The metagenomic landscape of xenobiotics biodegradation in mangrove sediments. Ecotoxicol Environ Saf 179:232–240

    Article  CAS  Google Scholar 

  • Chang T-H, Wang R, Peng Y-H, Chou T-H, Li Y-J, Shih Y (2020) Biodegradation of hexabromocyclododecane by Rhodopseudomonas palustris YSC3 strain: A free-living nitrogen-fixing bacterium isolated in Taiwan. Chemosphere 246:125621

    Article  CAS  Google Scholar 

  • Chen H, Bai X, Jing L, Chen R, Teng Y (2019) Characterization of antibiotic resistance genes in the sediments of an urban river revealed by comparative metagenomics analysis. Sci Total Environ 653:1513–1521

    Article  CAS  Google Scholar 

  • Chu BTT, Petrovich ML, Chaudhary A, Wright D, Murphy B, Wells G, Poretsky R (2018) Metagenomics reveals the impact of wastewater treatment plants on the dispersal of microorganisms and genes in aquatic sediments. Appl Environ Microbiol 84

  • Coates JD, Chakraborty R, Lack JG, O’Connor SM, Cole KA, Bender KS, Achenbach LA (2001) Anaerobic benzene oxidation coupled to nitrate reduction in pure culture by two strains of Dechloromonas. Nature 411:1039–1043

    Article  CAS  Google Scholar 

  • CPCB (2018) Annual Report, 2017–18. Central Pollution Control Board, Ministry of Environment, Forest & Climate Change, Government of India

  • CWC (2011) “Hot spots” in rivers of India

  • Dai W, Hodes A, Hui WH, Gingery M, Miller JF, Zhou ZH (2010) Three-dimensional structure of tropism-switching Bordetella bacteriophage. Proc Natl Acad Sci 107:4347–4352

    Article  CAS  Google Scholar 

  • Darzi Y, Yamate Y, Yamada T (2019) FuncTree2: an interactive radial tree for functional hierarchies and omics data visualization. Bioinformatics 35:4519–4521. https://doi.org/10.1093/bioinformatics/btz245

    Article  CAS  Google Scholar 

  • Das BK, Behera BK, Chakraborty HJ, Paria P, Gangopadhyay A, Rout AK, Nayak KK, Parida PK, Rai A (2020) Metagenomic study focusing on antibiotic resistance genes from the sediments of River Yamuna. Gene 758. https://doi.org/10.1016/j.gene.2020.144951

  • De Oliveira HC, Assato PA, Marcos CM, Scorzoni L, de Paula E, Silva ACA, Da Silva JDF, de Singulani JL, Alarcon KM, Fusco-Almeida AM, Mendes-Giannini MJS (2015) Paracoccidioides-host interaction: an overview on recent advances in the paracoccidioidomycosis. Front Microbiol 6:1319

    Article  Google Scholar 

  • Doulatov S, Hodes A, Dai L, Mandhana N, Liu M, Deora R, Simons RW, Zimmerly S, Miller JF (2004) Tropism switching in Bordetella bacteriophage defines a family of diversity-generating retroelements. Nature 431:476–481

    Article  CAS  Google Scholar 

  • Elbreki M, Ross RP, Hill C, O’Mahony J, McAuliffe O, Coffey A (2014) Bacteriophages and their derivatives as biotherapeutic agents in disease prevention and treatment. J Viruses 2014. https://doi.org/10.1155/2014/382539

  • Franco DC, Signori CN, Duarte RTD, Nakayama CR, Campos LS, Pellizari VH (2017) High prevalence of gammaproteobacteria in the sediments of admiralty bay and north bransfield Basin. Northwest Antarct Peninsula Front Microbiol 8:153. https://doi.org/10.3389/fmicb.2017.00153

    Article  Google Scholar 

  • Ghai R, Rodŕíguez-Valera F, McMahon KD, Toyama D, Rinke R, de Oliveira TCS, Garcia JW, de Miranda FP, Henrique-Silva F (2011) Metagenomics of the water column in the pristine upper course of the Amazon river. PLoS ONE 6:e23785

    Article  CAS  Google Scholar 

  • Gibbons SM, Jones E, Bearquiver A, Blackwolf F, Roundstone W, Scott N, Hooker J, Madsen R, Coleman ML, Gilbert JA (2014) Human and environmental impacts on river sediment microbial communities. PLoS ONE 9:e97435

    Article  Google Scholar 

  • Giuliani SE, Frank AM, Corgliano DM, Seifert C, Hauser L, Collart FR (2011) Environment sensing and response mediated by ABC transporters. BMC Genomics 12:1–14

    Article  Google Scholar 

  • He M, Cai L, Zhang C, Jiao N, Zhang R (2017) Phylogenetic diversity of T4-type phages in sediments from the subtropical pearl river estuary. Front Microbiol 8:897. https://doi.org/10.1016/j.margen.2019.100718

    Article  Google Scholar 

  • Himmelberg AM, Brüls T, Farmani Z, Weyrauch P, Barthel G, Schrader W, Meckenstock RU (2018) Anaerobic degradation of phenanthrene by a sulfate-reducing enrichment culture. Environ Microbiol 20:3589–3600

    Article  CAS  Google Scholar 

  • Houbraken J, Samson RA (2011) Phylogeny of Penicillium and the segregation of Trichocomaceae into three families. Stud Mycol 70:1–51

    Article  CAS  Google Scholar 

  • Huson DH, Auch AF, Qi J, Schuster SC (2007) MEGAN analysis of metagenomic data. Genome Res 17:377–386

    Article  CAS  Google Scholar 

  • Ittner LD, Junghans M, Werner I (2018) Aquatic fungi: a disregarded trophic level in ecological risk assessment of organic fungicides. Front Environ Sci 6:105

    Article  Google Scholar 

  • Iyer R, Damania A (2020) Shotgun metagenomics of indigenous bacteria collected from the banks of the San Jacinto River for biodegradation of aromatic waste. FEMS Microbiol Lett 367, fnaa133

  • Jain SK, Agarwal PK, Singh VP (2007) Hydrology and water resources of India. Springer Science & Business Media

  • James KL, Kung JW, Crable BR, Mouttaki H, Sieber JR, Nguyen HH, Yang Y, Xie Y, Erde J, Wofford NQ (2019) Syntrophusaciditrophicus uses the same enzymes in a reversible manner to degrade and synthesize aromatic and alicyclic acids. Environ Microbiol 21:1833–1846

    Article  CAS  Google Scholar 

  • Jantharadej K, Mhuantong W, Limpiyakorn T, Mongkolsuk S, Sirikanchana K, Suwannasilp BB (2020) Identification of sulfate-reducing and methanogenic microbial taxa in anaerobic bioreactors from industrial wastewater treatment plants using next-generation sequencing and gene clone library analyses. J Environ Sci Health, Part A 55:1283–1293

    Article  CAS  Google Scholar 

  • Jarrell KF, Walters AD, Bochiwal C, Borgia JM, Dickinson T, Chong JPJ (2011) Major players on the microbial stage: why archaea are important. Microbiology 157:919–936

    Article  CAS  Google Scholar 

  • Kanehisa M, Furumichi M, Tanabe M, Sato Y, Morishima K (2017) KEGG: new perspectives on genomes, pathways, diseases and drugs. Nucleic Acids Res 45:D353–D361

    Article  CAS  Google Scholar 

  • Kim Y, Van Bonn W, Aw TG, Rose JB (2017) Aquarium viromes: viromes of human-managed aquatic systems. Front Microbiol 8:1231

    Article  Google Scholar 

  • Koo H, Mojib N, Hakim JA, Hawes I, Tanabe Y, Andersen DT, Bej AK (2017) Microbial communities and their predicted metabolic functions in growth laminae of a unique large conical mat from Lake Untersee. East Antarctica Front Microbiol 8:1347

    Article  Google Scholar 

  • Liu K-H, Ding X-W, Narsing Rao MP, Zhang B, Zhang Y-G, Liu F-H, Liu B-B, Xiao M, Li W-J (2017) Morphological and transcriptomic analysis reveals the osmoadaptive response of endophytic fungus Aspergillus montevidensis ZYD4 to high salt stress. Front Microbiol 8:1789

    Article  Google Scholar 

  • Liu M, Deora R, Doulatov SR, Gingery M, Eiserling FA, Preston A, Maskell DJ, Simons RW, Cotter PA, Parkhill J (2002) Reverse transcriptase-mediated tropism switching in Bordetella bacteriophage. Science 295:2091–2094

    Article  CAS  Google Scholar 

  • Liu X, Bagwell CE, Wu L, Devol AH, Zhou J (2003) Molecular diversity of sulfate-reducing bacteria from two different continental margin habitats. Appl Environ Microbiol 69:6073

    Article  CAS  Google Scholar 

  • Lu X-M, Chen C, Zheng T-L (2017) Metagenomic insights into effects of chemical pollutants on microbial community composition and function in estuarine sediments receiving polluted river water. Microb Ecol 73:791–800

    Article  CAS  Google Scholar 

  • Maniloff J, Ackermann H-W, Jarvis A (1999) Phage Taxonomy and Classification. https://doi.org/10.1006/rwvi.1999.0024

    Article  Google Scholar 

  • Medeiros JD, Cantão ME, Cesar DE, Nicolás MF, Diniz CG, Silva VL, de Vasconcelos ATR, Coelho CM (2016) Comparative metagenome of a stream impacted by the urbanization phenomenon. Braz J Microbiol 47:835–845

    Article  CAS  Google Scholar 

  • Meyer F, Paarmann D, D’Souza M, Olson R, Glass EM, Kubal M, Paczian T, Rodriguez A, Stevens R, Wilke A (2008) The metagenomics RAST server–a public resource for the automatic phylogenetic and functional analysis of metagenomes. BMC Bioinformatics 9:1–8. https://doi.org/10.1002/9781118010518.ch37

    Article  Google Scholar 

  • Mishra S, Lin Z, Pang S, Zhang W, Bhatt P, Chen S (2021) Recent advanced technologies for the characterization of xenobiotic-degrading microorganisms and microbial communities. Front Bioeng Biotechnol 9:31

    Article  CAS  Google Scholar 

  • Mitchell AL, Almeida A, Beracochea M, Boland M, Burgin J, Cochrane G, Crusoe MR, Kale V, Potter SC, Richardson LJ (2020) MGnify: the microbiome analysis resource in 2020. Nucleic Acids Res 48:D570–D578. https://doi.org/10.1093/nar/gkz1035

    Article  CAS  Google Scholar 

  • Mittal P, PK, VP, Dhakan DB, Kumar S, Sharma VK (2019) Metagenome of a polluted river reveals a reservoir of metabolic and antibiotic resistance genes. Environmental Microbiome 14:1–12

  • Muthaiyah NP (2020) Rejuvenating Yamuna River by wastewater treatment and management.Int J Energy Environ Sci 5:14

    Article  Google Scholar 

  • Nitz H, Duarte M, Jauregui R, Pieper DH, Müller JA, Kästner M (2020) Identification of benzene-degrading Proteobacteria in a constructed wetland by employing in situ microcosms and RNA-stable isotope probing. Appl Microbiol Biotechnol 104:1809–1820

    Article  CAS  Google Scholar 

  • Overbeek R, Begley T, Butler RM, Choudhuri JV, Chuang H-Y, Cohoon M, de Crécy-Lagard V, Diaz N, Disz T, Edwards R (2005) The subsystems approach to genome annotation and its use in the project to annotate 1000 genomes. Nucleic Acids Res 33:5691–5702

    Article  CAS  Google Scholar 

  • Parmar K, Dafale N, Pal R, Tikariha H, Purohit H (2018) An insight into phage diversity at environmental habitats using comparative metagenomics approach. Curr Microbiol 75:132–141. https://doi.org/10.1007/s00284-017-1357-0

    Article  CAS  Google Scholar 

  • Rathour R, Gupta J, Mishra A, Rajeev AC, Dupont CL, Thakur IS (2020) A comparative metagenomic study reveals microbial diversity and their role in the biogeochemical cycling of Pangong lake. Sci Total Environ 731:139074

    Article  CAS  Google Scholar 

  • Reddy B, Dubey SK (2019) River Ganges water as reservoir of microbes with antibiotic and metal ion resistance genes: high throughput metagenomic approach. Environ Pollut 246:443–451

    Article  CAS  Google Scholar 

  • Samson R, Shah M, Yadav R, Sarode P, Rajput V, Dastager SG, Dharne MS, Khairnar K (2019) Metagenomic insights to understand transient influence of Yamuna River on taxonomic and functional aspects of bacterial and archaeal communities of River Ganges. Sci Total Environ 674:288–299

    Article  CAS  Google Scholar 

  • Sankara Subramanian SH, Balachandran KRS, Rangamaran VR, Gopal D (2020) RemeDB: tool for rapid prediction of enzymes involved in bioremediation from high-throughput metagenome data sets. J Comput Biol 27:1020–1029. https://doi.org/10.1089/cmb.2019.0345

    Article  CAS  Google Scholar 

  • Simon C, Daniel R (2009) Achievements and new knowledge unraveled by metagenomic approaches. Appl Microbiol Biotechnol 85:265–276

    Article  CAS  Google Scholar 

  • Sodhi KK, Kumar M, Singh DK (2021) Assessing the bacterial diversity and functional profiles of the River Yamuna using Illumina MiSeq sequencing. Arch Microbiol 203:367–375. https://doi.org/10.1007/s00203-020-02045-0

    Article  CAS  Google Scholar 

  • Sonthiphand P, Ruangroengkulrith S, Mhuantong W, Charoensawan V, Chotpantarat S, Boonkaewwan S (2019) Metagenomic insights into microbial diversity in a groundwater basin impacted by a variety of anthropogenic activities. Environ Sci and Pol Res 26(26):26765–26781

  • Tabatabaei M, Rahim RA, Abdullah N, Wright A-DG, Shirai Y, Sakai K, Sulaiman A, Hassan MA (2010) Importance of the methanogenic archaea populations in anaerobic wastewater treatments. Process Biochem 45:1214–1225

    Article  CAS  Google Scholar 

  • Tatusov RL, Galperin MY, Natale DA, Koonin EV (2000) The COG database: a tool for genome-scale analysis of protein functions and evolution. Nucleic Acids Res 28:33–36

    Article  CAS  Google Scholar 

  • ter Beek J, Guskov A, Slotboom DJ (2014) Structural diversity of ABC transporters. J Gen Physiol 143:419–435

    Article  Google Scholar 

  • Tsagaraki TM, Pree B, Leiknes Ø, Larsen A, Bratbak G, Øvreås L, Egge JK, Spanek R, Paulsen ML, Olsen Y (2018) Bacterial community composition responds to changes in copepod abundance and alters ecosystem function in an Arctic mesocosm study. ISME J 12:2694–2705

    Article  CAS  Google Scholar 

  • Vítězová M, Kohoutová A, Vítěz T, Hanišáková N, Kushkevych I (2020) Methanogenic microorganisms in industrial wastewater anaerobic treatment. Processes 8:1546

    Article  Google Scholar 

  • Von Schiller D, Acuña V, Aristi I, Arroita M, Basaguren A, Bellin A, Boyero L, Butturini A, Ginebreda A, Kalogianni E (2017) River ecosystem processes: a synthesis of approaches, criteria of use and sensitivity to environmental stressors. Sci Total Environ 596:465–480

    Article  Google Scholar 

  • Wang Y, Wegener G, Ruff SE, Wang F (2021) Methyl/alkyl-coenzyme M reductase-based anaerobic alkane oxidation in archaea. Environ Microbiol 23:530–541

    Article  CAS  Google Scholar 

  • White RA III, Chan AM, Gavelis GS, Leander BS, Brady AL, Slater GF, Lim DSS, Suttle CA (2016) Metagenomic analysis suggests modern freshwater microbialitesharbor a distinct core microbial community. Front Microbiol 6:1531

    Article  Google Scholar 

  • Wu D, Zhao Y, Cheng L, Zhou Z, Wu Q, Wang Q, Yuan Q (2021) Activity and structure of methanogenic microbial communities in sediments of cascade hydropower reservoirs, Southwest China. Sci Total Environ 147515.

  • Yadav R, Rajput V, Dharne M (2021) Functional metagenomic landscape of polluted river reveals potential genes involved in degradation of xenobiotic pollutants. Environ Res 192:110332

    Article  CAS  Google Scholar 

  • Yan Z, Hao Z, Wu H, Jiang H, Yang M, Wang C (2019) Co-occurrence patterns of the microbial community in polycyclic aromatic hydrocarbon-contaminated riverine sediments. J Hazard Mater 367:99–108

    Article  CAS  Google Scholar 

  • Zhang S, Amanze C, Sun C, Zou K, Fu S, Deng Y, Liu X, Liang Y (2021) Evolutionary, genomic, and biogeographic characterization of two novel xenobiotics-degrading strains affiliated with Dechloromonas. Heliyon e07181.

  • Zhang S, Tsementzi D, Hatt JK, Bivins A, Khelurkar N, Brown J, Tripathi SN, Konstantinidis KT (2019) Intensive allochthonous inputs along the Ganges River and their effect on microbial community composition and dynamics. Environ Microbiol 21:182–196

    Article  CAS  Google Scholar 

  • Zhang W, Lin Z, Pang S, Bhatt P, Chen S (2020) Insights into the biodegradation of lindane (γ-hexachlorocyclohexane) using a microbial system. Front Microbiol 11:522

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We acknowledged Mr. Asim Kumar Jana, Senior Technical Assistant of ICAR-CIFRI, Barrackpore, Kolkata, for sample collection and providing technical support.

Funding

This study was supported by the grant from the CABin program of Session 2020–2025 by the ICAR—Indian Agricultural Statistics Research Institute, New Delhi.

Author information

Authors and Affiliations

Authors

Contributions

Pranaya Kumar Parida: investigation, data analysis, original draft preparation.

Bijay Kumar Behera: conceptualization, methodology, investigation.

Budheswar Dehury: data interpretation, data analysis, writing the draft.

Ajaya Kumar Rout: writing, data analysis.

Dhruba Jyoti Sarkar: writing and statistical analysis.

Anil Rai: data analysis, critical revision.

Basanta Kumar Das: visualization, investigation.

Trilochan Mohapatra: supervision.

Corresponding author

Correspondence to Bijay Kumar Behera.

Ethics declarations

Ethics approval and consent to participate

Not applicable.

Consent for publication

Not applicable.

Competing interests

The authors declare no competing interests.

Additional information

Responsible Editor: Robert Duran

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 289 KB)

Supplementary file2 (XLSX 3686 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Parida, P.K., Behera, B.K., Dehury, B. et al. Community structure and function of microbiomes in polluted stretches of river Yamuna in New Delhi, India, using shotgun metagenomics. Environ Sci Pollut Res 29, 71311–71325 (2022). https://doi.org/10.1007/s11356-022-20766-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-022-20766-1

Keywords

Navigation