Skip to main content

Advertisement

Log in

Hippocampal M1 receptor function associated with spatial learning and memory in aged female rhesus macaques

  • Published:
AGE Aims and scope Submit manuscript

Abstract

Of the acetylcholine muscarinic receptors, the type 1 (M1) and type 2 (M2) receptors are expressed at the highest levels in the prefrontal cortex (PFC) and hippocampus, brain regions important for cognition. As equivocal findings of age-related changes of M1 and M2 in the nonhuman primate brain have been reported, we first assessed age-related changes in M1 and M2 in the PFC and hippocampus using saturation binding assays. Maximum M1 receptor binding, but not affinity of M1 receptor binding, decreased with age. In contrast, the affinity of M2 receptor binding, but not maximum M2 receptor binding, increased with age. To determine if in the elderly cognitive performance is associated with M1 or M2 function, we assessed muscarinic function in elderly female rhesus macaques in vivo using a scopolamine challenge pharmacological magnetic resonance imaging and in vitro using saturation binding assays. Based on their performance in a spatial maze, the animals were classified as good spatial performers (GSP) or poor spatial performers (PSP). In the hippocampus, but not PFC, the GSP group showed a greater change in T2*-weighted signal intensity after scopolamine challenge than the PSP group. The maximum M1 receptor binding and receptor binding affinity was greater in the GSP than the PSP group, but no group difference was found in M2 receptor binding. Parameters of circadian activity positively correlated with the difference in T2*-weighted signal intensity before and after the challenge, the maximum M1 receptor binding, and the M1 receptor binding affinity. Thus, while in rhesus macaques, there are age-related decreases in M1 and M2 receptor binding, in aged females, hippocampal M1, but not M2, receptor function is associated with spatial learning and memory and circadian activity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Ali-Melkkila T, Kanto J, Iisalo E (1993) Pharmacokinetics and related pharmacodynamics of anticholinergic drugs. Acta Anaesthesiol Scand 37(7):633–642

    Article  PubMed  CAS  Google Scholar 

  • Araujo JA, Studzinski CM, Milgram NW (2005) Further evidence for the cholinergic hypothesis of aging and dementia from the canine model of aging. Prog Neuropsychopharmacol Biol Psychiatry 29(3):411–422

    Article  PubMed  CAS  Google Scholar 

  • Banta Lavenex P, Lavenex P (2009) Spatial memory and the monkey hippocampus: not all space is created equal. Hippocampus 19(1):8–19

    Article  PubMed  Google Scholar 

  • Bartholomeusz CF, Wesnes KA, Kulkarni J, Vitetta L, Croft RJ, Nathan PJ (2008) Estradiol treatment and its interaction with the cholinergic system: effects on cognitive function in healthy young women. Horm Behav 54(5):684–693

    Article  PubMed  CAS  Google Scholar 

  • Biggan SL, Ingles JL, Beninger RJ (1996) Scopolamine differentially affects memory of 8- and 16-month-old rats in the double y-maze. Neurobiol Aging 17(1):25–30

    Article  PubMed  CAS  Google Scholar 

  • Cho YH, Friedman E, Silva AJ (1999) Ibotenate lesion of the hippocampus impair spatial learning but not contextual fear conditioning. Behav Brain Res 98:77–87

    Article  PubMed  CAS  Google Scholar 

  • Costall B, Barnes JM, Hamon M, Muller WE, Briley M (1990) Biochemical models for cognition enhancers. Pharmacopsychiatry 23(Suppl 2):85–88, discussion 89

    Article  PubMed  Google Scholar 

  • Day J, Damsma G, Fibiger HC (1991) Cholinergic activity in the rat hippocampus, cortex and striatum correlates with locomotor activity: an in vivo microdialysis study. Pharmacol Biochem Behav 38(4):723–729

    Article  PubMed  CAS  Google Scholar 

  • Dumas JA, Saykin AJ, McDonald BC, McAllister TW, Hynes ML, Newhouse PA (2008) Nicotinic versus muscarinic blockade alters verbal working memory-related brain activity in older women. Am J Geriatr Psychiatry 16(4):272–282

    Article  PubMed  Google Scholar 

  • Ebert U, Kirch W (1998) Scopolamine model of dementia: electroencephalogram findings and cognitive performance. Eur J Clin Investig 28(11):944–949

    Article  CAS  Google Scholar 

  • Ebert U, Grossmann M, Oertel R, Gramatte T, Kirch W (2001) Pharmacokinetic-pharmacodynapic modeling of the electroencephalogram effects of scopolamine in healthy volunteers. J Clin Pharmacol 41:51–60

    Article  PubMed  CAS  Google Scholar 

  • Eger EI, Zhang Y, Laster M, Food P, Kendig JJ, Sonner JM (2002) Acetylcholine receptors do not mediate the immobilization produced by inhaled anesthetics. Anaesth Analg 94:1500–1504

    CAS  Google Scholar 

  • Elrod K, Buccafusco JJ (1988) An evaluation of the mechanism of scopolamine-induced impairment in two passive avoidance protocols. Pharmacol Biochem Behav 29(1):15–21

    Article  PubMed  CAS  Google Scholar 

  • Fisher A (2008) Cholinergic treatments with emphasis on M1 muscarinic agonists as potential disease-modifying agents for Alzheimer’s disease. Neurotherapeutics 5(3):433–442

    Article  PubMed  CAS  Google Scholar 

  • Fisher A, Pittel Z, Haring R, Bar-Ner N, Kliger-Spatz M, Natan N, Egozi I, Sonego H, Marcovitch I, Brandeis R (2003) M1 muscarinic agonists can modulate some of the hallmarks in Alzheimer’s disease: implications in future therapy. J Mol Neurosci 20(3):349–356

    Article  PubMed  CAS  Google Scholar 

  • Flynn DD, Ferrari-DiLeo G, Levey AI, Mash DC (1995a) Differential alterations in muscarinic receptor subtypes in alzheimer’s disease: implications for cholinergic-based therapies. Life Sci 56(11–12):869–876

    Article  PubMed  CAS  Google Scholar 

  • Flynn DD, Ferrari-DiLeo G, Mash DC, Levey AI (1995b) Differential regulation of molecular subtypes of muscarinic receptors in Alzheimer’s disease. J Neurochem 64(4):1888–1891

    Article  PubMed  CAS  Google Scholar 

  • Fransson P (2004) Spontaneous low-frequency bold signal fluctuations: an fMRI investigation of the resting-state default mode of brain function hypothesis. Hum Brain Mapp 26(1):15–29

    Article  Google Scholar 

  • Fredrickson A, Snyder PJ, Cromer J, Thomas E, Lewis M, Maruff P (2008) The use of effect sizes to characterize the nature of cognitive change in psychopharmacological studies: an example with scopolamine. Hum Psychopharmacol 23(5):425–436

    Article  PubMed  CAS  Google Scholar 

  • Frey KA, Ehrenkaufer RLE, Beaucage S, Agranoff BW (1985) Quantitative in vivo receptor binding: I. Theory and application to the muscarinic cholinergic receptor. J Neurosci 5(2):421–428

    PubMed  CAS  Google Scholar 

  • Frey KA, Ciliax B, Agranoff BW (1991) Quantitative in vivo receptor binding: IV. Detection of muscarinic receptor down-regualtion by equilibrium and by tracer kinetic methods. Neurochem Res 16(9):1017–1023

    Article  PubMed  CAS  Google Scholar 

  • Gage FH, Chen KS, Buzsaki G, Armstrong D (1988) Experimental approaches to age-related cognitive impairments. Neurobiol Aging 9(5–6):645–655

    Article  PubMed  CAS  Google Scholar 

  • Gautam D, Duttaroy A, Cui Y, Han SJ, Deng C, Seeger T, Alzheimer C, Wess J (2006) M1–M3 muscarinic acetylcholine receptor-deficient mice: novel phenotypes. J Mol Neurosci 30(1–2):157–160

    Article  PubMed  CAS  Google Scholar 

  • Gillette MU, Buchanan GF, Artinian L, Hamilton SE, Nathanson NM, Liu C (2001) Role of the M1 receptor in regulating circadian rhythms. Life Sci 68(22–23):2467–2472

    Article  PubMed  CAS  Google Scholar 

  • Gold S, Christian B, Arndt S, Zeien G, Cizadlo T, Johnson DL, Flaum M, Andreasen NC (1998) Functional MRI statistical software packages: a comparative analysis. Hum Brain Mapp 6(2):73–84

    Article  PubMed  CAS  Google Scholar 

  • Haimov I, Hanuka E, Horowitz Y (2008) Chronic insomnia and cognitive functioning among older adults. Behav Sleep Med 6(1):32–54

    Article  PubMed  Google Scholar 

  • Haley GE, Landauer N, Renner L, Weiss A, Hooper K, Urbanski HF, Kohama SG, Neuringer M, Raber J (2009) Circadian activity associated with spatial learning and memory in aging rhesus monkeys. Exp Neurol 217(1):55–62

    Article  PubMed  CAS  Google Scholar 

  • Hartikainen K, Rorarius M (1999) Cortical responses to auditory stiuli during isoflurane burst suppression. Anaesthesia 54:210–214

    Article  PubMed  CAS  Google Scholar 

  • Jagoda EM, Kiesewetter DO, Shimoji K, Ravasi L, Yamada M, Gomeza J, Wess J, Eckelman WC (2003) Regional brain uptake of the muscarinic ligand, [18f]fp-tztp, is greatly decreased in M2 receptor knockout mice but not in M1, M3 and M4 receptor knockout mice. Neuropharmacology 44(5):653–661

    Article  PubMed  CAS  Google Scholar 

  • Klinkenberg I, Blokland A (2010) The validity of scopolamine as a pharmacological model for cognitive impairment: a review of animal behavioral studies. Neurosci Biobehav Rev (in press)

  • Knutson B, Gibbs SE (2007) Linking nucleus accumbens dopamine and blood oxygenation. Psychopharmacology (Berl) 191(3):813–822

    Article  CAS  Google Scholar 

  • Lavenex PB, Amaral DG, Lavenex P (2006) Hippocampal lesion prevents spatial relational learning in adult macaque monkeys. J Neurosci 26(17):4546–4558

    Article  PubMed  CAS  Google Scholar 

  • Liu C, Gillette MU (1996) Cholinergic regulation of the suprachiasmatic nucleus circadian rhythm via a muscarinic mechanism at night. J Neurosci 16(2):744–751

    PubMed  CAS  Google Scholar 

  • Logothetis NK, Guggenberger H, Peled S, Pauls J (1999) Functional imaging of the monkey brain. Nat Neurosci 2(6):555–562

    Article  PubMed  CAS  Google Scholar 

  • Luan L, Ding F, Ai Y, Andersen A, Hardy P, Forman E, Gerhardt GA, Gash DM, Grondin R, Zhang Z (2008) Pharmacological MRI (phMRI) monitoring of treatment in hemiparkinsonian rhesus monkeys. Cell Transplant 17(4):417–425

    PubMed  Google Scholar 

  • Ma L, Seager MA, Wittmann M, Jacobson M, Bickel D, Burno M, Jones K, Graufelds VK, Xu G, Pearson M, McCampbell A, Gaspar R, Shughrue P, Danziger A, Regan C, Flick R, Pascarella D, Garson S, Doran S, Kreatsoulas C, Veng L, Lindsley CW, Shipe W, Kuduk S, Sur C, Kinney G, Seabrook GR, Ray WJ (2009) Selective activation of the M1 muscarinic acetylcholine receptor achieved by allosteric potentiation. Proc Natl Acad Sci USA 106(37):15950–15955

    Article  PubMed  CAS  Google Scholar 

  • Matsui M, Yamada S, Oki T, Manabe T, Taketo MM, Ehlert FJ (2004) Functional analysis of muscarinic acetylcholine receptors using knockout mice. Life Sci 75(25):2971–2981

    Article  PubMed  CAS  Google Scholar 

  • Morin CM, Blais FC, Mimeault V (1998) Sleep disturbances in late life. In: Hersen M, Van Hasselt VB (eds) Handbook of clinical geropsychology. Plenum, New York, pp 273–299

    Google Scholar 

  • Murrell JC, Waters D, Johnson CB (2008) Comparative effects of halothane, isoflurane, sevoflurane, and desflurane on the electroencephalogram of the rat. Lab Anim 42:161–170

    Article  PubMed  CAS  Google Scholar 

  • Nakayama T, Penheiter AR, Penheiter SG, Chini EN, Thompson M, Warner DO, Jones KA (2006) Differential effects of volatile anesthetics on M3 muscarinic receptor coupling to the gαq heterotrimeric g protein. Anesthesiology 105:313–324

    Article  PubMed  CAS  Google Scholar 

  • Nathanson NM (2008) Synthesis, trafficking, and localization of muscarinic acetylcholine receptors. Pharmacol Ther 119(1):33–43

    Article  PubMed  CAS  Google Scholar 

  • Ogawa T, Shingu K, Shibata M, Osawa M, Mori K (1992) The divergent actions of volatile anaesthetics on background neuronal activity and reactive capability in the central nervous system in cats. Can J Anaesth 39:862–872

    Article  PubMed  CAS  Google Scholar 

  • Pereira FR, Alessio A, Sercheli MS, Pedro T, Bilevicius E, Rondina JM, Ozelo HF, Castellano G, Covolan RJ, Damasceno BP, Cendes F (2010) Asymmetrical hippocampal connectivity in mesial temporal lobe epilepsy: evidence from resting state fMRI. BMC Neurosci 11:66

    Article  PubMed  Google Scholar 

  • Porkkala T, Kaukinen S, Hakkinen V, Jantti V (1997) Median nerve somatosenory evoked potentials during isoflurane anaesthesia. Can J Anaesth 44:963–968

    Article  PubMed  CAS  Google Scholar 

  • Qiu A, Tuan TA, Woon PS, Abdul-Rahman MF, Graham S, Sim K (2010) Hippocampal-cortical structural connectivity disruptions in schizophrenia: an integrated perspective from hippocampal shape, cortical thickness, and integrity of white matter bundles. NeuroImage (in press)

  • Raber J, Rola R, LeFevour A, Morhardt D, Curley J, Mizumatsu S, VandenBerg SR, Fike JR (2004) Radiation-induced cognitive impairments are associated with changes in indicators of hippocampal neurogenesis. Radiat Res 162:39–47

    Article  PubMed  CAS  Google Scholar 

  • Rosier A, Cornette L, Orban GA (1998) Scopolamine-induced impairment of delayed recognition of abstract visual shapes. Neuropsychobiology 37(2):98–103

    Article  PubMed  CAS  Google Scholar 

  • Rouse ST, Edmunds SM, Yi H, Gilmor ML, Levey AI (2000) Localization of m(2) muscarinic acetylcholine receptor protein in cholinergic and non-cholinergic terminals in rat hippocampus. Neurosci Lett 284(3):182–186

    Article  PubMed  CAS  Google Scholar 

  • Sarter M, Turchi J (2002) Age- and dementia-associated impairments in divided attention: psychological constructs, animal models, and underlying neuronal mechanisms. Dement Geriatr Cogn Disord 13(1):46–58

    Article  PubMed  CAS  Google Scholar 

  • Savage UC, Faust WB, Lambert P, Moerschbaecher JM (1996) Effects of scopolamine on learning and memory in monkeys. Psychopharmacology (Berl) 123(1):9–14

    Article  CAS  Google Scholar 

  • Scali C, Vannucchi MG, Pepeu G, Casamenti F (1995) Peripherally injected scopolamine differentially modulates acetylcholine release in vivo in the young and aged rats. Neurosci Lett 197(3):171–174

    Article  PubMed  CAS  Google Scholar 

  • Small SA, Chawla MK, Buonocore M, Rapp PR, Barnes CA (2004) Imaging correlates of brain function in monkeys and rats isolates a hippocampal subregion differentially vulnerable to aging. Proc Natl Acad Sci USA 101(18):7181–7186

    Article  PubMed  CAS  Google Scholar 

  • Taffe MA, Weed MR, Gold LH (1999) Scopolamine alters rhesus monkey performance on a novel neuropsychological test battery. Brain Res Cogn Brain Res 8(3):203–212

    Article  PubMed  CAS  Google Scholar 

  • Tamminga CA (2006) The neurobiology of cognition in schizophrenia. J Clin Psychiatry 67(9):e11

    Article  PubMed  Google Scholar 

  • Thathiah A, De Strooper B (2009) G protein-coupled receptors, cholinergic dysfunction, and A beta toxicity in Alzheimer’s disease. Sci Signal 2(93):re8

    Article  PubMed  Google Scholar 

  • Thiel CM (2003) Cholinergic modulation of learning and memory in the human brain as detected with functional neuroimaging. Neurobiol Learn Mem 80:234–244

    Article  PubMed  CAS  Google Scholar 

  • Thomas E, Snyder PJ, Pietrzak RH, Jackson CE, Bednar M, Maruff P (2008) Specific impairments in visuospatial working and short-term memory following low-dose scopolamine challenge in healthy older adults. Neuropsychologia 46(10):2476–2484

    Article  PubMed  Google Scholar 

  • Tinkler GP, Voytko ML (2005) Estrogen modulates cognitive and cholinergic processes in surgically menopausal monkeys. Prog Neuropsychopharmacol Biol Psychiatry 29(3):423–431

    Article  PubMed  CAS  Google Scholar 

  • Tsushima K, Shingu K, Ikeda S, Kimura H, Yamada K, Murao K (1998) Supressive actions of volatile anaesthetics on the response capability in cats. Can J Anaesth 45:240–245

    Article  PubMed  CAS  Google Scholar 

  • Van Kampen JM, Eckman CB (2009) Agonist-induced restoration of hippocampal neurogenesis and cognitive improvement in a model of cholinergic denervation. Neuropharmacology (in press)

  • Vannucchi MG, Goldman-Rakic PS (1991) Age-dependent decrease in the affinity of muscarinic M1 receptors in neocortex of rhesus monkeys. Proc Natl Acad Sci USA 88(24):11475–11479

    Article  PubMed  CAS  Google Scholar 

  • Vincent JL, Patel GH, Fox MD, Snyder AZ, Baker JT, VanEsen DC, Zempel JM, Snyder LH, Corbetta M, Raichle ME (2007) Intrinsic functional architecture in the anaesthetized monkey brain. Nature 447:83–86

    Article  PubMed  CAS  Google Scholar 

  • Wagster MV, Whitehouse PJ, Walker LC, Kellar KJ, Price DL (1990) Laminar organization and age-related loss of cholinergic receptors in temporal neocortex of rhesus monkey. J Neurosci 10(9):2879–2885

    PubMed  CAS  Google Scholar 

  • Wamsley JK, Zarbin MA, Birdsall NJM, Kuhar MJ (1980) Muscarinic cholinergic receptors: autoradiographic localization of high and low affinity agonist binding sites. Brain Res 200:1–12

    Article  PubMed  CAS  Google Scholar 

  • Wink AM, Bernard F, Salvador R, Bullmore E, Suckling J (2006) Age and cholinergic effects on hemodynamics and functional coherence of human hippocampus. Neurobiol Aging 27:1395–1404

    Article  PubMed  CAS  Google Scholar 

  • Wise RG, Tracey I (2006) The role of fMRI in drug discovery. J Magn Reson Imaging 23(6):862–876

    Article  PubMed  Google Scholar 

  • Wisman LA, Sahin G, Maingay M, Leanza G, Kirik D (2008) Functional convergence of dopaminergic and cholinergic input is critical for hippocampus-dependent working memory. J Neurosci 28(31):7797–7807

    Article  PubMed  CAS  Google Scholar 

  • Zhang Z, Andersen AH, Ai Y, Loveland A, Hardy PA, Gerhardt GA, Gash DM (2006) Assessing nigrostriatal dysfunctions by pharmacological MRI in Parkinsonian rhesus macaques. Neuroimage 33(2):636–643

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Dominique Eghlidi, Sharon Kryger, Laurie Renner, Alison Weiss, and Vince Warren for their technical assistance. This work was supported by NIH grants RR-000163, AG-023477, and AG-029612 and an OHSU Tartar Fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jacob Raber.

About this article

Cite this article

Haley, G.E., Kroenke, C., Schwartz, D. et al. Hippocampal M1 receptor function associated with spatial learning and memory in aged female rhesus macaques. AGE 33, 309–320 (2011). https://doi.org/10.1007/s11357-010-9184-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11357-010-9184-2

Keywords

Navigation