Skip to main content
Log in

Neuronal and morphological bases of cognitive decline in aged rhesus monkeys

  • Published:
AGE Aims and scope Submit manuscript

Abstract

Rhesus monkeys provide a valuable model for studying the basis of cognitive aging because they are vulnerable to age-related decline in executive function and memory in a manner similar to humans. Some of the behavioral tasks sensitive to the effects of aging are the delayed response working memory test, recognition memory tests including the delayed nonmatching-to-sample and the delayed recognition span task, and tests of executive function including reversal learning and conceptual set-shifting task. Much effort has been directed toward discovering the neurobiological parameters that are coupled to individual differences in age-related cognitive decline. Area 46 of the dorsolateral prefrontal cortex (dlPFC) has been extensively studied for its critical role in executive function while the hippocampus and related cortical regions have been a major target of research for memory function. Some of the key age-related changes in area 46 include decreases in volume, microcolumn strength, synapse density, and α1- and α2-adrenergic receptor binding densities. All of these measures significantly correlate with cognitive scores. Interestingly, the critical synaptic subtypes associated with cognitive function appear to be different between the dlPFC and the hippocampus. For example, the dendritic spine subtype most critical to task acquisition and vulnerable to aging in area 46 is the thin spine, whereas in the dentate gyrus, the density of large mushroom spines with perforated synapses correlates with memory performance. This review summarizes age-related changes in anatomical, neuronal, and synaptic parameters within brain areas implicated in cognition and whether these changes are associated with cognitive decline.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Aizawa K, Ageyama N, Yokoyama C, Hisatsune T (2009) Age-dependent alteration in hippocampal neurogenesis correlates with learning performance of macaque monkeys. Exp Anim 58(4):403–407

    PubMed  CAS  Google Scholar 

  • Aizawa K, Ageyama N, Terao K, Hisatsune T (2011) Primate-specific alterations in neural stem/progenitor cells in the aged hippocampus. Neurobiol Aging 32(1):140–150. doi:10.1016/j.neurobiolaging.2008.12.011

    PubMed  CAS  Google Scholar 

  • Alvarez P, Zola-Morgan S, Squire LR (1995) Damage limited to the hippocampal region produces long-lasting memory impairment in monkeys. J Neurosci 15(5 Pt 2):3796–3807

    PubMed  CAS  Google Scholar 

  • Amaral DG (1993) Morphological analyses of the brains of behaviorally characterized aged nonhuman primates. Neurobiol Aging 14(6):671–672

    PubMed  CAS  Google Scholar 

  • Aoki C, Venkatesan C, Go CG, Forman R, Kurose H (1998) Cellular and subcellular sites for noradrenergic action in the monkey dorsolateral prefrontal cortex as revealed by the immunocytochemical localization of noradrenergic receptors and axons. Cereb Cortex 8(3):269–277

    PubMed  CAS  Google Scholar 

  • Arnsten AF (2006) Fundamentals of attention-deficit/hyperactivity disorder: circuits and pathways. J Clin Psychiatry 67(Suppl 8):7–12

    PubMed  CAS  Google Scholar 

  • Arnsten AF, Contant TA (1992) Alpha-2 adrenergic agonists decrease distractibility in aged monkeys performing the delayed response task. Psychopharmacology (Berl) 108(1–2):159–169

    CAS  Google Scholar 

  • Arnsten AF, Goldman-Rakic PS (1985) Alpha 2-adrenergic mechanisms in prefrontal cortex associated with cognitive decline in aged nonhuman primates. Science 230(4731):1273–1276

    PubMed  CAS  Google Scholar 

  • Arnsten AF, Goldman-Rakic PS (1990) Analysis of alpha-2 adrenergic agonist effects on the delayed nonmatch-to-sample performance of aged rhesus monkeys. Neurobiol Aging 11(6):583–590

    PubMed  CAS  Google Scholar 

  • Arnsten AF, Li BM (2005) Neurobiology of executive functions: catecholamine influences on prefrontal cortical functions. Biol Psychiatry 57(11):1377–1384. doi:10.1016/j.biopsych.2004.08.019

    PubMed  CAS  Google Scholar 

  • Arnsten AF, Cai JX, Murphy BL, Goldman-Rakic PS (1994) Dopamine D1 receptor mechanisms in the cognitive performance of young adult and aged monkeys. Psychopharmacology (Berl) 116(2):143–151

    CAS  Google Scholar 

  • Arnsten AF, Steere JC, Jentsch DJ, Li BM (1998) Noradrenergic influences on prefrontal cortical cognitive function: opposing actions at postjunctional alpha 1 versus alpha 2-adrenergic receptors. Adv Pharmacol 42:764–767

    PubMed  CAS  Google Scholar 

  • Bachevalier J, Mishkin M (1986) Visual recognition impairment follows ventromedial but not dorsolateral prefrontal lesions in monkeys. Behav Brain Res 20(3):249–261

    PubMed  CAS  Google Scholar 

  • Bachevalier J, Landis LS, Walker LC, Brickson M, Mishkin M, Price DL, Cork LC (1991) Aged monkeys exhibit behavioral deficits indicative of widespread cerebral dysfunction. Neurobiol Aging 12(2):99–111

    PubMed  CAS  Google Scholar 

  • Bai L, Hof PR, Standaert DG, Xing Y, Nelson SE, Young AB, Magnusson KR (2004) Changes in the expression of the NR2B subunit during aging in macaque monkeys. Neurobiol Aging 25(2):201–208

    PubMed  CAS  Google Scholar 

  • Barbas H, Rempel-Clower N (1997) Cortical structure predicts the pattern of corticocortical connections. Cereb Cortex 7(7):635–646

    PubMed  CAS  Google Scholar 

  • Bartus RT, Fleming D, Johnson HR (1978) Aging in the rhesus monkey: debilitating effects on short-term memory. J Gerontol 33(6):858–871

    PubMed  CAS  Google Scholar 

  • Bartus RT, Dean RL 3rd, Fleming DL (1979) Aging in the rhesus monkey: effects on visual discrimination learning and reversal learning. J Gerontol 34(2):209–219

    PubMed  CAS  Google Scholar 

  • Beal MF, Walker LC, Storey E, Segar L, Price DL, Cork LC (1991) Neurotransmitters in neocortex of aged rhesus monkeys. Neurobiol Aging 12(5):407–412

    PubMed  CAS  Google Scholar 

  • Beason-Held LL, Rosene DL, Killiany RJ, Moss MB (1999) Hippocampal formation lesions produce memory impairment in the rhesus monkey. Hippocampus 9(5):562–574. doi:10.1002/(SICI)1098-1063(1999)9:5<562::AID-HIPO10>3.0.CO;2-X

    PubMed  CAS  Google Scholar 

  • Bigham MH, Lidow MS (1995) Adrenergic and serotonergic receptors in aged monkey neocortex. Neurobiol Aging 16(1):91–104

    PubMed  CAS  Google Scholar 

  • Bliss TV, Collingridge GL (1993) A synaptic model of memory: long-term potentiation in the hippocampus. Nature 361(6407):31–39. doi:10.1038/361031a0

    PubMed  CAS  Google Scholar 

  • Brozoski TJ, Brown RM, Rosvold HE, Goldman PS (1979) Cognitive deficit caused by regional depletion of dopamine in prefrontal cortex of rhesus monkey. Science 205(4409):929–932

    PubMed  CAS  Google Scholar 

  • Buckmaster CA, Eichenbaum H, Amaral DG, Suzuki WA, Rapp PR (2004) Entorhinal cortex lesions disrupt the relational organization of memory in monkeys. J Neurosci 24(44):9811–9825. doi:10.1523/JNEUROSCI.1532-04.2004

    PubMed  CAS  Google Scholar 

  • Calhoun ME, Mao Y, Roberts JA, Rapp PR (2004) Reduction in hippocampal cholinergic innervation is unrelated to recognition memory impairment in aged rhesus monkeys. J Comp Neurol 475(2):238–246. doi:10.1002/cne.20181

    PubMed  Google Scholar 

  • Carroll RC, Zukin RS (2002) NMDA-receptor trafficking and targeting: implications for synaptic transmission and plasticity. Trends Neurosci 25(11):571–577

    PubMed  CAS  Google Scholar 

  • Chang YM, Rosene DL, Killiany RJ, Mangiamele LA, Luebke JI (2005) Increased action potential firing rates of layer 2/3 pyramidal cells in the prefrontal cortex are significantly related to cognitive performance in aged monkeys. Cereb Cortex 15(4):409–418. doi:10.1093/cercor/bhh144

    PubMed  Google Scholar 

  • Clarke HF, Dalley JW, Crofts HS, Robbins TW, Roberts AC (2004) Cognitive inflexibility after prefrontal serotonin depletion. Science 304(5672):878–880. doi:10.1126/science.1094987

    PubMed  CAS  Google Scholar 

  • Clarke HF, Walker SC, Crofts HS, Dalley JW, Robbins TW, Roberts AC (2005) Prefrontal serotonin depletion affects reversal learning but not attentional set shifting. J Neurosci 25(2):532–538. doi:10.1523/JNEUROSCI.3690-04.2005

    PubMed  CAS  Google Scholar 

  • Clarke HF, Walker SC, Dalley JW, Robbins TW, Roberts AC (2007) Cognitive inflexibility after prefrontal serotonin depletion is behaviorally and neurochemically specific. Cereb Cortex 17(1):18–27. doi:10.1093/cercor/bhj120

    PubMed  CAS  Google Scholar 

  • Cork LC (1993) Plaques in prefrontal cortex of aged, behaviorally-tested rhesus monkeys: incidence, distribution, and relationship to task performance. Neurobiol Aging 14(6):675–676

    PubMed  CAS  Google Scholar 

  • Corkin S (1984) Lasting consequences of bilateral medial temporal lobectomy: clinical course and experimental findings in H.M. Semin Neurol 4:249–259

    Google Scholar 

  • Cruz L, Roe DL, Urbanc B, Cabral H, Stanley HE, Rosene DL (2004) Age-related reduction in microcolumnar structure in area 46 of the rhesus monkey correlates with behavioral decline. Proc Natl Acad Sci USA 101(45):15846–15851. doi:10.1073/pnas.0407002101

    PubMed  CAS  Google Scholar 

  • Cupp CJ, Uemura E (1980) Age-related changes in prefrontal cortex of Macaca mulatta: quantitative analysis of dendritic branching patterns. Exp Neurol 69(1):143–163. doi:10.1016/0014-4886(80)90150-8

    PubMed  CAS  Google Scholar 

  • Dias R, Robbins TW, Roberts AC (1996) Primate analogue of the Wisconsin Card Sorting Test: effects of excitotoxic lesions of the prefrontal cortex in the marmoset. Behav Neurosci 110(5):872–886

    PubMed  CAS  Google Scholar 

  • Divac I, Rosvold HE, Szwarcbart MK (1967) Behavioral effects of selective ablation of the caudate nucleus. J Comp Physiol Psychol 63(2):184–190

    PubMed  CAS  Google Scholar 

  • Duan H, Wearne SL, Rocher AB, Macedo A, Morrison JH, Hof PR (2003) Age-related dendritic and spine changes in corticocortically projecting neurons in macaque monkeys. Cereb Cortex 13(9):950–961

    PubMed  Google Scholar 

  • Dumitriu D, Hao J, Hara Y, Kaufmann J, Janssen WG, Lou W, Rapp PR, Morrison JH (2010) Selective changes in thin spine density and morphology in monkey prefrontal cortex correlate with aging-related cognitive impairment. J Neurosci 30(22):7507–7515. doi:10.1523/JNEUROSCI.6410-09.2010

    PubMed  CAS  Google Scholar 

  • Eberling JL, Roberts JA, Rapp PR, Tuszynski MH, Jagust WJ (1997) Cerebral glucose metabolism and memory in aged rhesus macaques. Neurobiol Aging 18(4):437–443. doi:10.1016/S0197-4580(97)00040-7

    PubMed  CAS  Google Scholar 

  • Fellows LK, Farah MJ (2003) Ventromedial frontal cortex mediates affective shifting in humans: evidence from a reversal learning paradigm. Brain 126(Pt 8):1830–1837. doi:10.1093/brain/awg180

    PubMed  Google Scholar 

  • Friedman HR, Goldman-Rakic PS (1988) Activation of the hippocampus and dentate gyrus by working-memory: a 2-deoxyglucose study of behaving rhesus monkeys. J Neurosci 8(12):4693–4706

    PubMed  CAS  Google Scholar 

  • Fristoe NM, Salthouse TA, Woodard JL (1997) Examination of age-related deficits on the Wisconsin Card Sorting Test. Neuropsychology 11(3):428–436

    PubMed  CAS  Google Scholar 

  • Funahashi S, Bruce CJ, Goldman-Rakic PS (1989) Mnemonic coding of visual space in the monkey’s dorsolateral prefrontal cortex. J Neurophysiol 61(2):331–349

    PubMed  CAS  Google Scholar 

  • Funahashi S, Bruce CJ, Goldman-Rakic PS (1993) Dorsolateral prefrontal lesions and oculomotor delayed-response performance: evidence for mnemonic “scotomas”. J Neurosci 13(4):1479–1497

    PubMed  CAS  Google Scholar 

  • Gazzaley AH, Siegel SJ, Kordower JH, Mufson EJ, Morrison JH (1996) Circuit-specific alterations of N-methyl-D-aspartate receptor subunit 1 in the dentate gyrus of aged monkeys. Proc Natl Acad Sci USA 93(7):3121–3125

    PubMed  CAS  Google Scholar 

  • Gazzaley AH, Thakker MM, Hof PR, Morrison JH (1997) Preserved number of entorhinal cortex layer II neurons in aged macaque monkeys. Neurobiol Aging 18(5):549–553

    PubMed  CAS  Google Scholar 

  • Gearing M, Tigges J, Mori H, Mirra SS (1996) A beta40 is a major form of beta-amyloid in nonhuman primates. Neurobiol Aging 17(6):903–908

    PubMed  CAS  Google Scholar 

  • Geinisman Y, de Toledo-Morrell L, Morrell F (1986) Aged rats need a preserved complement of perforated axospinous synapses per hippocampal neuron to maintain good spatial memory. Brain Res 398(2):266–275. doi:10.1016/0006-8993(86)91486-1

    PubMed  CAS  Google Scholar 

  • Geinisman Y, deToledo-Morrell L, Morrell F (1991) Induction of long-term potentiation is associated with an increase in the number of axospinous synapses with segmented postsynaptic densities. Brain Res 566(1–2):77–88. doi:10.1016/0006-8993(91)91683-R

    PubMed  CAS  Google Scholar 

  • Geinisman Y, Berry RW, Disterhoft JF, Power JM, Van der Zee EA (2001) Associative learning elicits the formation of multiple-synapse boutons. J Neurosci 21(15):5568–5573

    PubMed  CAS  Google Scholar 

  • Gilardi KV, Shideler SE, Valverde CR, Roberts JA, Lasley BL (1997) Characterization of the onset of menopause in the rhesus macaque. Biol Reprod 57(2):335–340

    PubMed  CAS  Google Scholar 

  • Goldman-Rakic PS (1995) Cellular basis of working memory. Neuron 14(3):477–485. doi:10.1016/0896-6273(95)90304-6

    PubMed  CAS  Google Scholar 

  • Goldman-Rakic PS, Brown RM (1981) Regional changes of monoamines in cerebral cortex and subcortical structures of aging rhesus monkeys. Neuroscience 6(2):177–187. doi:10.1016/0306-4522(81)90053-1

    PubMed  CAS  Google Scholar 

  • Greenough WT, West RW, DeVoogd TJ (1978) Subsynaptic plate perforations: changes with age and experience in the rat. Science 202(4372):1096–1098

    PubMed  CAS  Google Scholar 

  • Groc L, Choquet D (2006) AMPA and NMDA glutamate receptor trafficking: multiple roads for reaching and leaving the synapse. Cell Tissue Res 326(2):423–438. doi:10.1007/s00441-006-0254-9

    PubMed  CAS  Google Scholar 

  • Haaland KY, Vranes LF, Goodwin JS, Garry PJ (1987) Wisconsin Card Sort Test performance in a healthy elderly population. J Gerontol 42(3):345–346

    PubMed  CAS  Google Scholar 

  • Hao J, Rapp PR, Janssen WG, Lou W, Lasley BL, Hof PR, Morrison JH (2007) Interactive effects of age and estrogen on cognition and pyramidal neurons in monkey prefrontal cortex. Proc Natl Acad Sci USA 104(27):11465–11470. doi:10.1073/pnas.0704757104

    PubMed  CAS  Google Scholar 

  • Hara Y, Park CS, Janssen WG, Roberts MT, Morrison JH, Rapp PR (2010) Synaptic correlates of memory and menopause in the hippocampal dentate gyrus in rhesus monkeys. Neurobiol Aging. doi:10.1016/j.neurobiolaging.2010.09.014

  • Hara Y, Park CS, Janssen WG, Punsoni M, Rapp PR, Morrison JH (2011) Synaptic characteristics of dentate gyrus axonal boutons and their relationships with aging, menopause, and memory in female rhesus monkeys. J Neurosci 31(21):7737–7744. doi:10.1523/JNEUROSCI.0822-11.2011

    PubMed  CAS  Google Scholar 

  • Harris KM (1995) How multiple-synapse boutons could preserve input specificity during an interneuronal spread of LTP. Trends Neurosci 18(8):365–369

    PubMed  CAS  Google Scholar 

  • Henderson VW (2008) Cognitive changes after menopause: influence of estrogen. Clin Obstet Gynecol 51(3):618–626. doi:10.1097/GRF.0b013e318180ba10

    PubMed  Google Scholar 

  • Heynen AJ, Quinlan EM, Bae DC, Bear MF (2000) Bidirectional, activity-dependent regulation of glutamate receptors in the adult hippocampus in vivo. Neuron 28(2):527–536. doi:10.1016/S0896-6273(00)00130-6

    PubMed  CAS  Google Scholar 

  • Hof PR, Nimchinsky EA, Young WG, Morrison JH (2000) Numbers of Meynert and layer IVB cells in area V1: a stereologic analysis in young and aged macaque monkeys. J Comp Neurol 420(1):113–126. doi:10.1002/(SICI)1096-9861(20000424)420:1<113::AID-CNE8>3.0.CO;2-N

    PubMed  CAS  Google Scholar 

  • Hof PR, Duan H, Page TL, Einstein M, Wicinski B, He Y, Erwin JM, Morrison JH (2002) Age-related changes in GluR2 and NMDAR1 glutamate receptor subunit protein immunoreactivity in corticocortically projecting neurons in macaque and patas monkeys. Brain Res 928(1–2):175–186

    PubMed  CAS  Google Scholar 

  • Inouye SK, Albert MS, Mohs R, Sun K, Berkman LF (1993) Cognitive performance in a high-functioning community-dwelling elderly population. J Gerontol 48(4):M146–M151

    PubMed  CAS  Google Scholar 

  • Iversen SD, Mishkin M (1970) Perseverative interference in monkeys following selective lesions of the inferior prefrontal convexity. Exp Brain Res 11(4):376–386

    PubMed  CAS  Google Scholar 

  • Jones TA, Chu CJ, Grande LA, Gregory AD (1999) Motor skills training enhances lesion-induced structural plasticity in the motor cortex of adult rats. J Neurosci 19(22):10153–10163

    PubMed  CAS  Google Scholar 

  • Kabaso D, Coskren PJ, Henry BI, Hof PR, Wearne SL (2009) The electrotonic structure of pyramidal neurons contributing to prefrontal cortical circuits in macaque monkeys is significantly altered in aging. Cereb Cortex 19(10):2248–2268. doi:10.1093/cercor/bhn242

    PubMed  Google Scholar 

  • Kasai H, Matsuzaki M, Noguchi J, Yasumatsu N, Nakahara H (2003) Structure–stability–function relationships of dendritic spines. Trends Neurosci 26(7):360–368

    PubMed  CAS  Google Scholar 

  • Kaye JA, Swihart T, Howieson D, Dame A, Moore MM, Karnos T, Camicioli R, Ball M, Oken B, Sexton G (1997) Volume loss of the hippocampus and temporal lobe in healthy elderly persons destined to develop dementia. Neurology 48(5):1297–1304

    PubMed  CAS  Google Scholar 

  • Kessels HW, Malinow R (2009) Synaptic AMPA receptor plasticity and behavior. Neuron 61(3):340–350. doi:10.1016/j.neuron.2009.01.015

    PubMed  CAS  Google Scholar 

  • Keuker JI, Luiten PG, Fuchs E (2003) Preservation of hippocampal neuron numbers in aged rhesus monkeys. Neurobiol Aging 24(1):157–165

    PubMed  Google Scholar 

  • Kimura N, Tanemura K, Nakamura S, Takashima A, Ono F, Sakakibara I, Ishii Y, Kyuwa S, Yoshikawa Y (2003) Age-related changes of Alzheimer’s disease-associated proteins in cynomolgus monkey brains. Biochem Biophys Res Commun 310(2):303–311

    PubMed  CAS  Google Scholar 

  • Kondo H, Lavenex P, Amaral DG (2008) Intrinsic connections of the macaque monkey hippocampal formation: I. Dentate gyrus. J Comp Neurol 511(4):497–520. doi:10.1002/cne.21825

    PubMed  Google Scholar 

  • Lai ZC, Moss MB, Killiany RJ, Rosene DL, Herndon JG (1995) Executive system dysfunction in the aged monkey: spatial and object reversal learning. Neurobiol Aging 16(6):947–954

    PubMed  CAS  Google Scholar 

  • Lee B, Groman S, London ED, Jentsch JD (2007) Dopamine D2/D3 receptors play a specific role in the reversal of a learned visual discrimination in monkeys. Neuropsychopharmacology 32(10):2125–2134. doi:10.1038/sj.npp.1301337

    PubMed  CAS  Google Scholar 

  • Li BM, Mao ZM, Wang M, Mei ZT (1999) Alpha-2 adrenergic modulation of prefrontal cortical neuronal activity related to spatial working memory in monkeys. Neuropsychopharmacology 21(5):601–610. doi:10.1016/S0893-133X(99)00070-6

    PubMed  CAS  Google Scholar 

  • Luebke JI, Amatrudo JM (2010) Age-related increase of sI(AHP) in prefrontal pyramidal cells of monkeys: relationship to cognition. Neurobiol Aging. doi:10.1016/j.neurobiolaging.2010.07.002

  • Luebke JI, Chang YM (2007) Effects of aging on the electrophysiological properties of layer 5 pyramidal cells in the monkey prefrontal cortex. Neuroscience 150(3):556–562. doi:10.1016/j.neuroscience.2007.09.042

    PubMed  CAS  Google Scholar 

  • Luebke JI, Rosene DL (2003) Aging alters dendritic morphology, input resistance, and inhibitory signaling in dentate granule cells of the rhesus monkey. J Comp Neurol 460(4):573–584. doi:10.1002/cne.10668

    PubMed  Google Scholar 

  • Luebke JI, Chang YM, Moore TL, Rosene DL (2004) Normal aging results in decreased synaptic excitation and increased synaptic inhibition of layer 2/3 pyramidal cells in the monkey prefrontal cortex. Neuroscience 125(1):277–288. doi:10.1016/j.neuroscience.2004.01.035

    PubMed  CAS  Google Scholar 

  • Luebke J, Barbas H, Peters A (2010) Effects of normal aging on prefrontal area 46 in the rhesus monkey. Brain Res Rev 62(2):212–232. doi:10.1016/j.brainresrev.2009.12.002

    PubMed  Google Scholar 

  • Makris N, Kennedy DN, Boriel DL, Rosene DL (2010) Methods of MRI-based structural imaging in the aging monkey. Methods 50(3):166–177. doi:10.1016/j.ymeth.2009.06.007

    Google Scholar 

  • McEnaney KW, Butter CM (1969) Perseveration of responding and nonresponding in monkeys with orbital frontal ablations. J Comp Physiol Psychol 68(4):558–561

    PubMed  CAS  Google Scholar 

  • Merrill DA, Roberts JA, Tuszynski MH (2000) Conservation of neuron number and size in entorhinal cortex layers II, III, and V/VI of aged primates. J Comp Neurol 422(3):396–401. doi:10.1002/1096-9861(20000703)422:3<396::AID-CNE6>3.0.CO;2-R

    PubMed  CAS  Google Scholar 

  • Mesulam MM, Mufson EJ, Levey AI, Wainer BH (1983) Cholinergic innervation of cortex by the basal forebrain: cytochemistry and cortical connections of the septal area, diagonal band nuclei, nucleus basalis (substantia innominata), and hypothalamus in the rhesus monkey. J Comp Neurol 214(2):170–197. doi:10.1002/cne.902140206

    PubMed  CAS  Google Scholar 

  • Moore TL, Schettler SP, Killiany RJ, Herndon JG, Luebke JI, Moss MB, Rosene DL (2005) Cognitive impairment in aged rhesus monkeys associated with monoamine receptors in the prefrontal cortex. Behav Brain Res 160(2):208–221. doi:10.1016/j.bbr.2004.12.003

    PubMed  CAS  Google Scholar 

  • Moore TL, Killiany RJ, Herndon JG, Rosene DL, Moss MB (2006) Executive system dysfunction occurs as early as middle-age in the rhesus monkey. Neurobiol Aging 27(10):1484–1493. doi:10.1016/j.neurobiolaging.2005.08.004

    PubMed  Google Scholar 

  • Morrison JH, Hof PR (1997) Life and death of neurons in the aging brain. Science 278(5337):412–419

    PubMed  CAS  Google Scholar 

  • Moss MB, Albert MS, Butters N, Payne M (1986) Differential patterns of memory loss among patients with Alzheimer’s disease, Huntington’s disease, and alcoholic Korsakoff’s syndrome. Arch Neurol 43(3):239–246

    PubMed  CAS  Google Scholar 

  • Moss MB, Rosene DL, Peters A (1988) Effects of aging on visual recognition memory in the rhesus monkey. Neurobiol Aging 9(5–6):495–502

    PubMed  CAS  Google Scholar 

  • Moss MB, Killiany RJ, Lai ZC, Rosene DL, Herndon JG (1997) Recognition memory span in rhesus monkeys of advanced age. Neurobiol Aging 18(1):13–19

    PubMed  CAS  Google Scholar 

  • Mountcastle VB (2003) Introduction. Computation in cortical columns. Cereb Cortex 13(1):2–4

    PubMed  Google Scholar 

  • Mueller EA, Moore MM, Kerr DC, Sexton G, Camicioli RM, Howieson DB, Quinn JF, Kaye JA (1998) Brain volume preserved in healthy elderly through the eleventh decade. Neurology 51(6):1555–1562

    PubMed  CAS  Google Scholar 

  • Murray EA, Mishkin M (1998) Object recognition and location memory in monkeys with excitotoxic lesions of the amygdala and hippocampus. J Neurosci 18(16):6568–6582

    PubMed  CAS  Google Scholar 

  • Nagahara AH, Bernot T, Tuszynski MH (2010) Age-related cognitive deficits in rhesus monkeys mirror human deficits on an automated test battery. Neurobiol Aging 31(6):1020–1031. doi:10.1016/j.neurobiolaging.2008.07.007

    PubMed  Google Scholar 

  • Nusser Z, Lujan R, Laube G, Roberts JD, Molnar E, Somogyi P (1998) Cell type and pathway dependence of synaptic AMPA receptor number and variability in the hippocampus. Neuron 21(3):545–559. doi:10.1016/S0896-6273(00)80565-6

    PubMed  CAS  Google Scholar 

  • O’Donnell KA, Rapp PR, Hof PR (1999) Preservation of prefrontal cortical volume in behaviorally characterized aged macaque monkeys. Exp Neurol 160(1):300–310. doi:10.1006/exnr.1999.7192

    PubMed  Google Scholar 

  • Peters A, Kaiserman-Abramof IR (1969) The small pyramidal neuron of the rat cerebral cortex. The synapses upon dendritic spines. Z Zellforsch Mikrosk Anat 100(4):487–506

    PubMed  CAS  Google Scholar 

  • Peters A, Sethares C (2002) The effects of age on the cells in layer 1 of primate cerebral cortex. Cereb Cortex 12(1):27–36

    PubMed  Google Scholar 

  • Peters A, Leahu D, Moss MB, McNally KJ (1994) The effects of aging on area 46 of the frontal cortex of the rhesus monkey. Cereb Cortex 4(6):621–635

    PubMed  CAS  Google Scholar 

  • Peters A, Rosene DL, Moss MB, Kemper TL, Abraham CR, Tigges J, Albert MS (1996) Neurobiological bases of age-related cognitive decline in the rhesus monkey. J Neuropathol Exp Neurol 55(8):861–874

    PubMed  CAS  Google Scholar 

  • Peters A, Morrison JH, Rosene DL, Hyman BT (1998a) Feature article: are neurons lost from the primate cerebral cortex during normal aging? Cereb Cortex 8(4):295–300

    PubMed  CAS  Google Scholar 

  • Peters A, Sethares C, Moss MB (1998b) The effects of aging on layer 1 in area 46 of prefrontal cortex in the rhesus monkey. Cereb Cortex 8(8):671–684

    PubMed  CAS  Google Scholar 

  • Peters A, Jones EG, Morrison JH (1999) Cerebral cortex: neurodegenerative and age-related changes in structure and function of cerebral cortex, vol 14. Springer, New York

    Google Scholar 

  • Peters A, Moss MB, Sethares C (2001) The effects of aging on layer 1 of primary visual cortex in the rhesus monkey. Cereb Cortex 11(2):93–103

    PubMed  CAS  Google Scholar 

  • Peters A, Sethares C, Luebke JI (2008) Synapses are lost during aging in the primate prefrontal cortex. Neuroscience 152(4):970–981. doi:10.1016/j.neuroscience.2007.07.014

    PubMed  CAS  Google Scholar 

  • Petrides M, Pandya DN (1999) Dorsolateral prefrontal cortex: comparative cytoarchitectonic analysis in the human and the macaque brain and corticocortical connection patterns. Eur J Neurosci 11(3):1011–1036

    PubMed  CAS  Google Scholar 

  • Porrino LJ, Goldman-Rakic PS (1982) Brainstem innervation of prefrontal and anterior cingulate cortex in the rhesus monkey revealed by retrograde transport of HRP. J Comp Neurol 205(1):63–76. doi:10.1002/cne.902050107

    PubMed  CAS  Google Scholar 

  • Presty SK, Bachevalier J, Walker LC, Struble RG, Price DL, Mishkin M, Cork LC (1987) Age differences in recognition memory of the rhesus monkey (Macaca mulatta). Neurobiol Aging 8(5):435–440

    PubMed  CAS  Google Scholar 

  • Price JL, Ko AI, Wade MJ, Tsou SK, McKeel DW, Morris JC (2001) Neuron number in the entorhinal cortex and CA1 in preclinical Alzheimer disease. Arch Neurol 58(9):1395–1402

    PubMed  CAS  Google Scholar 

  • Rapp PR (1990) Visual discrimination and reversal learning in the aged monkey (Macaca mulatta). Behav Neurosci 104(6):876–884

    PubMed  CAS  Google Scholar 

  • Rapp PR (1995) Emotion, memory and behavior: studies on human and nonhuman primates, vol 18. Cognitive neuroscience perspectives on aging in nonhuman primates. Japan Scientific Societies, Tokyo

    Google Scholar 

  • Rapp PR, Amaral DG (1989) Evidence for task-dependent memory dysfunction in the aged monkey. J Neurosci 9(10):3568–3576

    PubMed  CAS  Google Scholar 

  • Rapp PR, Amaral DG (1991) Recognition memory deficits in a subpopulation of aged monkeys resemble the effects of medial temporal lobe damage. Neurobiol Aging 12(5):481–486

    PubMed  CAS  Google Scholar 

  • Rapp PR, Morrison JH, Roberts JA (2003) Cyclic estrogen replacement improves cognitive function in aged ovariectomized rhesus monkeys. J Neurosci 23(13):5708–5714

    PubMed  CAS  Google Scholar 

  • Raz N, Rodrigue KM, Head D, Kennedy KM, Acker JD (2004) Differential aging of the medial temporal lobe: a study of a five-year change. Neurology 62(3):433–438

    PubMed  CAS  Google Scholar 

  • Rhodes MG (2004) Age-related differences in performance on the Wisconsin Card Sorting Test: a meta-analytic review. Psychol Aging 19(3):482–494. doi:10.1037/0882-7974.19.3.482

    PubMed  Google Scholar 

  • Roberts JA, Gilardi KV, Lasley B, Rapp PR (1997) Reproductive senescence predicts cognitive decline in aged female monkeys. Neuroreport 8(8):2047–2051

    PubMed  CAS  Google Scholar 

  • Rogers RD, Andrews TC, Grasby PM, Brooks DJ, Robbins TW (2000) Contrasting cortical and subcortical activations produced by attentional-set shifting and reversal learning in humans. J Cogn Neurosci 12(1):142–162

    PubMed  CAS  Google Scholar 

  • Saper CB (1984) Organization of cerebral cortical afferent systems in the rat. II. Magnocellular basal nucleus. J Comp Neurol 222(3):313–342. doi:10.1002/cne.902220302

    PubMed  CAS  Google Scholar 

  • Scheff SW, Price DA, Sparks DL (2001) Quantitative assessment of possible age-related change in synaptic numbers in the human frontal cortex. Neurobiol Aging 22(3):355–365

    PubMed  CAS  Google Scholar 

  • Shamy JL, Buonocore MH, Makaron LM, Amaral DG, Barnes CA, Rapp PR (2006) Hippocampal volume is preserved and fails to predict recognition memory impairment in aged rhesus monkeys (Macaca mulatta). Neurobiol Aging 27(10):1405–1415. doi:10.1016/j.neurobiolaging.2005.07.019

    PubMed  Google Scholar 

  • Shamy JL, Habeck C, Hof PR, Amaral DG, Fong SG, Buonocore MH, Stern Y, Barnes CA, Rapp PR (2010) Volumetric correlates of spatiotemporal working and recognition memory impairment in aged rhesus monkeys. Cereb Cortex. doi:10.1093/cercor/bhq210

  • Simic G, Kostovic I, Winblad B, Bogdanovic N (1997) Volume and number of neurons of the human hippocampal formation in normal aging and Alzheimer’s disease. J Comp Neurol 379(4):482–494. doi:10.1002/(SICI)1096-9861(19970324)379:4<482::AID-CNE2>3.0.CO;2-Z

    PubMed  CAS  Google Scholar 

  • Sloane JA, Pietropaolo MF, Rosene DL, Moss MB, Peters A, Kemper T, Abraham CR (1997) Lack of correlation between plaque burden and cognition in the aged monkey. Acta Neuropathol 94(5):471–478

    PubMed  CAS  Google Scholar 

  • Small SA, Chawla MK, Buonocore M, Rapp PR, Barnes CA (2004) Imaging correlates of brain function in monkeys and rats isolates a hippocampal subregion differentially vulnerable to aging. Proc Natl Acad Sci USA 101(18):7181–7186. doi:10.1073/pnas.0400285101

    PubMed  CAS  Google Scholar 

  • Smith DE, Rapp PR, McKay HM, Roberts JA, Tuszynski MH (2004) Memory impairment in aged primates is associated with focal death of cortical neurons and atrophy of subcortical neurons. J Neurosci 24(18):4373–4381. doi:10.1523/JNEUROSCI.4289-03.2004

    PubMed  CAS  Google Scholar 

  • Soghomonian JJ, Sethares C, Peters A (2010) Effects of age on axon terminals forming axosomatic and axodendritic inhibitory synapses in prefrontal cortex. Neuroscience 168(1):74–81. doi:10.1016/j.neuroscience.2010.03.020

    PubMed  CAS  Google Scholar 

  • Spencer JL, Waters EM, Romeo RD, Wood GE, Milner TA, McEwen BS (2008) Uncovering the mechanisms of estrogen effects on hippocampal function. Front Neuroendocrinol 29(2):219–237. doi:10.1016/j.yfrne.2007.08.006

    PubMed  CAS  Google Scholar 

  • Squire LR, Zola-Morgan S (1988) Memory: brain systems and behavior. Trends Neurosci 11(4):170–175. doi:10.1016/0166-2236(88)90144-0

    PubMed  CAS  Google Scholar 

  • Squire LR, Zola-Morgan S, Chen KS (1988) Human amnesia and animal models of amnesia: performance of amnesic patients on tests designed for the monkey. Behav Neurosci 102(2):210–221

    PubMed  CAS  Google Scholar 

  • Steere JC, Arnsten AF (1997) The alpha-2A noradrenergic receptor agonist guanfacine improves visual object discrimination reversal performance in aged rhesus monkeys. Behav Neurosci 111(5):883–891

    PubMed  CAS  Google Scholar 

  • Sterio DC (1984) The unbiased estimation of number and sizes of arbitrary particles using the disector. J Microsc 134(Pt 2):127–136

    PubMed  CAS  Google Scholar 

  • Stroessner-Johnson HM, Rapp PR, Amaral DG (1992) Cholinergic cell loss and hypertrophy in the medial septal nucleus of the behaviorally characterized aged rhesus monkey. J Neurosci 12(5):1936–1944

    PubMed  CAS  Google Scholar 

  • Tigges J, Gordon TP, McClure HM, Hall EC, Peters A (1988) Survival rate and life span of rhesus monkeys at the Yerkes regional primate research center. Am J Primatol 15:263–273

    Google Scholar 

  • Tigges J, Herndon JG, Rosene DL (1995) Mild age-related changes in the dentate gyrus of adult rhesus monkeys. Acta Anat (Basel) 153(1):39–48

    CAS  Google Scholar 

  • Tigges J, Herndon JG, Rosene DL (1996) Preservation into old age of synaptic number and size in the supragranular layer of the dentate gyrus in rhesus monkeys. Acta Anat (Basel) 157(1):63–72

    CAS  Google Scholar 

  • Tisserand DJ, Visser PJ, van Boxtel MP, Jolles J (2000) The relation between global and limbic brain volumes on MRI and cognitive performance in healthy individuals across the age range. Neurobiol Aging 21(4):569–576

    PubMed  CAS  Google Scholar 

  • Toni N, Buchs PA, Nikonenko I, Bron CR, Muller D (1999) LTP promotes formation of multiple spine synapses between a single axon terminal and a dendrite. Nature 402(6760):421–425. doi:10.1038/46574

    PubMed  CAS  Google Scholar 

  • Toni N, Buchs PA, Nikonenko I, Povilaitite P, Parisi L, Muller D (2001) Remodeling of synaptic membranes after induction of long-term potentiation. J Neurosci 21(16):6245–6251

    PubMed  CAS  Google Scholar 

  • Uemura E (1980) Age-related changes in prefrontal cortex of Macaca mulatta: synaptic density. Exp Neurol 69(1):164–172. doi:10.1016/0014-4886(80)90151-X

    PubMed  CAS  Google Scholar 

  • Uemura E (1985a) Age-related changes in the subiculum of Macaca mulatta: dendritic branching pattern. Exp Neurol 87(3):412–427

    PubMed  CAS  Google Scholar 

  • Uemura E (1985b) Age-related changes in the subiculum of Macaca mulatta: synaptic density. Exp Neurol 87(3):403–411

    PubMed  CAS  Google Scholar 

  • Vijayraghavan S, Wang M, Birnbaum SG, Williams GV, Arnsten AF (2007) Inverted-U dopamine D1 receptor actions on prefrontal neurons engaged in working memory. Nat Neurosci 10(3):376–384. doi:10.1038/nn1846

    PubMed  CAS  Google Scholar 

  • Voytko ML (1999) Impairments in acquisition and reversals of two-choice discriminations by aged rhesus monkeys. Neurobiol Aging 20(6):617–627. doi:10.1016/S0197-4580(99)00097-4

    PubMed  CAS  Google Scholar 

  • Voytko ML, Tinkler GP (2004) Cognitive function and its neural mechanisms in nonhuman primate models of aging, Alzheimer disease, and menopause. Front Biosci 9:1899–1914

    PubMed  CAS  Google Scholar 

  • Voytko ML, Sukhov RR, Walker LC, Breckler SJ, Price DL, Koliatsos VE (1995) Neuronal number and size are preserved in the nucleus basalis of aged rhesus monkeys. Dementia 6(3):131–141

    PubMed  CAS  Google Scholar 

  • Voytko ML, Murray R, Higgs CJ (2009) Executive function and attention are preserved in older surgically menopausal monkeys receiving estrogen or estrogen plus progesterone. J Neurosci 29(33):10362–10370. doi:10.1523/JNEUROSCI.1591-09.2009

    PubMed  CAS  Google Scholar 

  • Walhovd KB, Westlye LT, Amlien I, Espeseth T, Reinvang I, Raz N, Agartz I, Salat DH, Greve DN, Fischl B, Dale AM, Fjell AM (2009) Consistent neuroanatomical age-related volume differences across multiple samples. Neurobiol Aging. doi:10.1016/j.neurobiolaging.2009.05.013

  • Walker ML, Herndon JG (2008) Menopause in nonhuman primates? Biol Reprod 79(3):398–406. doi:10.1095/biolreprod.108.068536

    PubMed  CAS  Google Scholar 

  • Wang AC, Hara Y, Janssen WG, Rapp PR, Morrison JH (2010) Synaptic estrogen receptor-alpha levels in prefrontal cortex in female rhesus monkeys and their correlation with cognitive performance. J Neurosci 30(38):12770–12776. doi:10.1523/JNEUROSCI.3192-10.2010

    PubMed  CAS  Google Scholar 

  • Wenk GL, Pierce DJ, Struble RG, Price DL, Cork LC (1989) Age-related changes in multiple neurotransmitter systems in the monkey brain. Neurobiol Aging 10(1):11–19

    PubMed  CAS  Google Scholar 

  • West MJ (1993) Regionally specific loss of neurons in the aging human hippocampus. Neurobiol Aging 14(4):287–293

    PubMed  CAS  Google Scholar 

  • West MJ, Amaral DG, Rapp PR (1993) Preserved hippocampal cell number in aged monkeys with recognition memory deficits. Soc for Neurosci Abstr 19:599

    Google Scholar 

  • Witter MP, Van Hoesen GW, Amaral DG (1989) Topographical organization of the entorhinal projection to the dentate gyrus of the monkey. J Neurosci 9(1):216–228

    PubMed  CAS  Google Scholar 

  • Woolley CS, McEwen BS (1994) Estradiol regulates hippocampal dendritic spine density via an N-methyl-D-aspartate receptor-dependent mechanism. J Neurosci 14(12):7680–7687

    PubMed  CAS  Google Scholar 

  • Yankova M, Hart SA, Woolley CS (2001) Estrogen increases synaptic connectivity between single presynaptic inputs and multiple postsynaptic CA1 pyramidal cells: a serial electron-microscopic study. Proc Natl Acad Sci USA 98(6):3525–3530. doi:10.1073/pnas.051624598

    PubMed  CAS  Google Scholar 

  • Yassa MA, Muftuler LT, Stark CE (2010) Ultrahigh-resolution microstructural diffusion tensor imaging reveals perforant path degradation in aged humans in vivo. Proc Natl Acad Sci USA 107(28):12687–12691. doi:10.1073/pnas.1002113107

    PubMed  CAS  Google Scholar 

  • Zola-Morgan S, Squire LR (1985) Medial temporal lesions in monkeys impair memory on a variety of tasks sensitive to human amnesia. Behav Neurosci 99(1):22–34

    PubMed  CAS  Google Scholar 

  • Zola-Morgan S, Squire LR, Amaral DG (1986) Human amnesia and the medial temporal region: enduring memory impairment following a bilateral lesion limited to field CA1 of the hippocampus. J Neurosci 6(10):2950–2967

    PubMed  CAS  Google Scholar 

  • Zola-Morgan S, Squire LR, Amaral DG, Suzuki WA (1989) Lesions of perirhinal and parahippocampal cortex that spare the amygdala and hippocampal formation produce severe memory impairment. J Neurosci 9(12):4355–4370

    PubMed  CAS  Google Scholar 

  • Zola-Morgan S, Squire LR, Clower RP, Rempel NL (1993) Damage to the perirhinal cortex exacerbates memory impairment following lesions to the hippocampal formation. J Neurosci 13(1):251–265

    PubMed  CAS  Google Scholar 

  • Zola-Morgan S, Squire LR, Ramus SJ (1994) Severity of memory impairment in monkeys as a function of locus and extent of damage within the medial temporal lobe memory system. Hippocampus 4(4):483–495. doi:10.1002/hipo.450040410

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

Original research and manuscript preparation was supported by National Institute on Aging grants R37 AG06647, R01 AG010606, P01 AG16765 to J.H.M. and in part by the Intramural Research Program of the National Institute on Aging. This manuscript was prepared while Y.H. was an Ellison Medical Foundation/AFAR Postdoctoral Fellow. We thank Erik Bloss for critical discussion and helpful comments on the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John H. Morrison.

About this article

Cite this article

Hara, Y., Rapp, P.R. & Morrison, J.H. Neuronal and morphological bases of cognitive decline in aged rhesus monkeys. AGE 34, 1051–1073 (2012). https://doi.org/10.1007/s11357-011-9278-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11357-011-9278-5

Keywords

Navigation