Skip to main content
Log in

Aging and vascular dysfunction: beneficial melatonin effects

  • Published:
AGE Aims and scope Submit manuscript

Abstract

Aging is characterized by a progressive deterioration of physiological functions and metabolic processes. In aging and in diseases associated with the elderly, the loss of cells in vital structures or organs may be related to several factors. Sirtuin1 (SIRT1) is a member of the sirtuin family of protein deacetylases involved in life span extension; however, its involvement in the aging is not yet completely defined. Recently, melatonin, a pleiotropic molecule, shown to activate SIRT1 in primary neurons of young animals, as well as in aged neurons of a murine model of senescence. Melatonin is known to modulate oxidative stress-induced senescence and pro-survival pathways. We treated 6- and 15-week-old apolipoprotein E (APOE)-deficient mice (APOE 6w and 15w) with two melatonin formulations (FAST and RETARD) to evaluate their anti-aging effect. Morphological changes in vessels (aortic arch) of APOE mice were evaluated SIRT1, p53, endothelial nitric oxide synthase (eNOS), and endothelin-1 (ET-1) markers. We demonstrate that SIRT1 and eNOS decresed in APOE mice between 6 and 15 weeks and that aging induced an elevated expression of p53 and ET-1 in APOE animals. Melatonin improved the impairment of endothelial damage and reduced loss of SIRT1 and eNOS decreasing p53 and ET-1 expression. The RETARD melatonin preparation caused a greater improvement of vessel cytoarchitecture. In summary, we indicate that SIRT1-p53-eNOS axis as one of the important marker of advanced vascular dysfunctions linked to aging. Finally, we suggest that extended-release melatonin (RETARD) provides a more appropriate option for contrasting these dysfunctions compared with rapid release melatonin (FAST) administration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • An SJ, Boyd R, Wang Y, Qiu X, Wang HD (2006) Endothelin-1 expression in vascular adventitial fibroblasts. Am J Physiol Heart Circ Physiol 290(2):H700–H708

    Article  PubMed  CAS  Google Scholar 

  • Arunachalam G, Yao H, Sundar IK, Caito S, Rahman I (2010) SIRT1 regulates oxidant-and cigarette smoke-induced eNOS acetylation in endothelial cells: role of resveratrol. Biochem Biophys Res Commun 393(1):66–72

    Article  PubMed  CAS  Google Scholar 

  • Balaban RS, Nemoto S, Finkel T (2005) Mitochondria, oxidants, and aging. Cell 120(4):483–495

    Article  PubMed  CAS  Google Scholar 

  • Baur JA (2010) Biochemical effects of SIRT1 activators. Biochim Biophys Acta 1804(8):1626–1634

    Article  PubMed  CAS  Google Scholar 

  • Benot S, Goberna R, Reiter RJ, Garcia-Mauriño S, Osuna C, Guerrero JM (1999) Physiological levels of melatonin contribute to the antioxidant capacity of human serum. J Pineal Res 27(1):59–64

    Article  PubMed  CAS  Google Scholar 

  • Borradaile NM, Pickering JG (2010) Polyploidy impairs human aortic endothelial cell function and is prevented by nicotinamide phosphoribosyltransferase. Am J Physiol Cell Physiol 298(1):C66–C74

    Article  PubMed  CAS  Google Scholar 

  • Bubenik GA, Konturek SJ (2011) Melatonin and aging: prospects for human treatment. J Physiol Pharmacol 62(1):13–19

    PubMed  CAS  Google Scholar 

  • Chang HM, Wu UI, Lan CT (2009) Melatonin preserves longevity protein (sirtuin 1) expression in the hippocampus of total sleep-deprived rats. J Pineal Res 47(3):211–220

    Article  PubMed  CAS  Google Scholar 

  • Chen Z, Peng IC, Cui X, Li YS, Chien S, Shyy JY (2010) Shear stress, SIRT1, and vascular homeostasis. Proc Natl Acad Sci USA 107(22):10268–10273

    Article  PubMed  CAS  Google Scholar 

  • Chung S, Yao H, Caito S, Hwang JW, Arunachalam G, Rahman I (2010) Regulation of SIRT1 in cellular functions: role of polyphenols. Arch Biochem Biophys 501(1):79–90

    Article  PubMed  CAS  Google Scholar 

  • Coleman R, Hayek T, Keidar S, Aviram M (2006) A mouse model for human atherosclerosis: long-term histopathological study of lesion development in the aortic arch of apolipoprotein E-deficient (E0) mice. Acta Histochem 108(6):415–424

    Article  PubMed  CAS  Google Scholar 

  • Danz ED, Skramsted J, Henry N, Bennett JA, Keller RS (2009) Resveratrol prevents doxorubicin cardiotoxicity through mitochondrial stabilization and the Sirt1 pathway. Free Radic Biol Med 46(12):1589–1597

    Article  PubMed  Google Scholar 

  • Deanfield JE, Halcox JP, Rabelink TJ (2007) Endothelial function and dysfunction: testing and clinical relevance. Circulation 115(10):1285–1295

    PubMed  Google Scholar 

  • Di Wang H, Rätsep MT, Chapman A, Boyd R (2010) Adventitial fibroblasts in vascular structure and function: the role of oxidative stress and beyond. Can J Physiol Pharmacol 88(3):177–186

    Article  PubMed  CAS  Google Scholar 

  • Dominguez-Rodriguez A, Abreu-Gonzalez P, Sanchez-Sanchez JJ, Kaski JC, Reiter RJ (2010) Melatonin and circadian biology in human cardiovascular disease. J Pineal Res 49(1):14–22

    PubMed  CAS  Google Scholar 

  • Donmez G, Guarente L (2010) Aging and disease: connections to sirtuins. Aging Cell 9(2):285–290

    Article  PubMed  CAS  Google Scholar 

  • Ergul A (2011) Endothelin-1 and diabetic complications: focus on the vasculature. Pharmacol Res 63(6):477–482

    Article  PubMed  CAS  Google Scholar 

  • Guarani V, Potente M (2010) SIRT1—a metabolic sensor that controls blood vessel growth. Curr Opin Pharmacol 10(2):139–145

    Article  PubMed  CAS  Google Scholar 

  • Gutierrez-Cuesta J, Tajes M, Jiménez A, Coto-Montes A, Camins A, Pallàs M (2008) Evaluation of potential pro-survival pathways regulated by melatonin in a murine senescence model. J Pineal Res 45(4):497–505

    Article  PubMed  CAS  Google Scholar 

  • Han MK, Song EK, Guo Y, Ou X, Mantel C, Broxmeyer HE (2008) SIRT1 regulates apoptosis and Nanog expression in mouse embryonic stem cells by controlling p53 subcellular localization. Cell Stem Cell 2(3):241–251

    Article  PubMed  CAS  Google Scholar 

  • Heitzer T, Schlinzig T, Krohn K, Meinertz T, Münzel T (2003) Endothelial dysfunction, oxidative stress, and risk of cardiovascular events in patients with coronary artery disease. Circulation 108(4):500

    Article  CAS  Google Scholar 

  • Higashi Y, Noma K, Yoshizumi M, Kihara Y (2009) Endothelial function and oxidative stress in cardiovascular diseases. Circ J 73(3):411–418

    Article  PubMed  CAS  Google Scholar 

  • Inanaga K, Ichiki T, Miyazaki R, Takeda K, Hashimoto T, Matsuura H, Sunagawa K (2010) Acetylcholinesterase inhibitors attenuate atherogenesis in apolipoprotein E-knockout mice. Atherosclerosis 213(1):52–58

    Article  PubMed  CAS  Google Scholar 

  • Ito T, Yagi S, Yamakuchi M (2010) MicroRNA-34a regulation of endothelial senescence. Biochem Biophys Res Commun 398(4):735–740

    Article  PubMed  CAS  Google Scholar 

  • Ivey ME, Osman N, Little PJ (2008) Endothelin-1 signalling in vascular smooth muscle: pathways controlling cellular functions associated with atherosclerosis. Atherosclerosis 199(2):237–247

    Article  PubMed  CAS  Google Scholar 

  • Jawien J, Nastalek P, Korbut R (2004) Mouse models of experimental atherosclerosis. J Physiol Pharmacol 55:503–517

    PubMed  CAS  Google Scholar 

  • Jung-Hynes B, Ahmad N (2009) SIRT1 controls circadian clock circuitry and promotes cell survival: a connection with age-related neoplasms. FASEB J 23(12):4370

    CAS  Google Scholar 

  • Jung-Hynes B, Reiter RJ, Ahmad N (2010) Sirtuins, melatonin and circadian rhythms: building a bridge between aging and cancer. J Pineal Res 48(1):9–19

    Article  PubMed  CAS  Google Scholar 

  • Kalani M (2008) The importance of endothelin-1 for microvascular dysfunction in diabetes. Vasc Health Risk Manag 4(5):1061–1068

    PubMed  CAS  Google Scholar 

  • Kato R, Mori C, Kitazato K, Arata S, Obama T, Mori M, Takahashi K, Aiuchi T, Takano T, Itabe H (2009) Transient increase in plasma oxidized LDL during the progression of atherosclerosis in apolipoprotein E knockout mice. Arterioscler Thromb Vasc Biol 29(1):33–39

    Article  PubMed  CAS  Google Scholar 

  • Köhler R, Hoyer J (2007) Role of TRPV4 in the mechanotransduction of shear stress in endothelial cells. In: Liedtke WB, Heller S (eds) TRP ion channel function in sensory transduction and cellular signalling cascades. CRC Press, Boca Raton, Chapter 27

    Google Scholar 

  • Li L, Gao P, Zhang H, Chen H, Zheng W, Lv X, Xu T, Wei Y, Liu D, Liang C (2011) SIRT1 inhibits angiotensin II-induced vascular smooth muscle cell hypertrophy. Acta Biochim Biophys Sin (Shanghai) 43(2):103–109

    Article  CAS  Google Scholar 

  • Mattagajasingh I, Kim CS, Naqvi A, Yamamori T, Hoffman TA, Jung SB, DeRicco J, Kasuno K, Irani K (2007) SIRT1 promotes endothelium-dependent vascular relaxation by activating endothelial nitric oxide synthase. Proc Natl Acad Sci USA 104(37):14855–14860

    Article  PubMed  CAS  Google Scholar 

  • Nakashima Y, Plump AS, Raines EW, Breslow JL, Ross R (1994) ApoE-deficient mice develop lesions of all phases of atherosclerosis throughout the arterial tree. Arterioscler Thromb 14(1):133–140

    Article  PubMed  CAS  Google Scholar 

  • Ota H, Akishita M, Eto M, Iijima K, Kaneki M, Ouchi Y (2007) Sirt1 modulates premature senescence-like phenotype in human endothelial cells. J Mol Cell Cardiol 43(5):571–579

    Article  PubMed  CAS  Google Scholar 

  • Ota H, Eto M, Kano MR, Ogawa S, Iijima K, Akishita M, Ouchi Y (2008) Cilostazol inhibits oxidative stress-induced premature senescence via upregulation of Sirt1 in human endothelial cells. Arterioscler Thromb Vasc Biol 28(9):1634–1639

    Article  PubMed  CAS  Google Scholar 

  • Ota H, Eto M, Ogawa S, Iijima K, Akishita M, Ouchi Y (2010) SIRT1/eNOS axis as a potential target against vascular senescence, dysfunction and atherosclerosis. J Atheroscler Thromb 17(5):431–435

    Article  PubMed  CAS  Google Scholar 

  • Pallas M, Junyet F, Verdaguer E, Beas-Zarate, Camins (2011) Aging control with resveratrol. Aging Drug Discov Today 7(3–4):51–56

  • Pallàs M, Pizarro JG, Gutierrez-Cuesta J, Crespo-Biel N, Alvira D, Tajes M, Yeste-Velasco M, Folch J, Canudas AM, Sureda FX, Ferrer I, Camins A (2008) Modulation of SIRT1 expression in different neurodegenerative models and human pathologies. Neuroscience 154(4):1388–1397

    Article  PubMed  Google Scholar 

  • Paradies G, Petrosillo G, Paradies V, Reiter RJ, Ruggiero FM (2010) Melatonin, cardiolipin and mitochondrial bioenergetics in health and disease. J Pineal Res 48(4):297–310

    Article  PubMed  CAS  Google Scholar 

  • Paredes SD, Bejarano I, Terrón MP, Barriga C, Reiter RJ, Rodríguez AB (2009) Melatonin and tryptophan counteract lipid peroxidation and modulate superoxide dismutase activity in ringdove heterophils in vivo. Effect of antigen-induced activation and age. Age (Dordr) 31(3):179–188

    Article  CAS  Google Scholar 

  • Pereira TM, Nogueira BV, Lima LC, Porto ML, Arruda JA, Vasquez EC, Meyrelles SS (2010) Cardiac and vascular changes in elderly atherosclerotic mice: the influence of gender. Lipids Health Dis 9:87

    Article  PubMed  Google Scholar 

  • Poeggeler B (2005) Melatonin, aging, and age-related diseases: perspectives for prevention, intervention, and therapy. Endocrine 27(2):201–212

    Article  PubMed  CAS  Google Scholar 

  • Reiter RJ (1992) The ageing pineal gland and its physiological consequences. Bioessays 14(3):169–175

    Article  PubMed  CAS  Google Scholar 

  • Reiter RJ, Tan DX, Mayo JC, Sainz RM, Lopez-Burillo S (2002) Melatonin, longevity and health in the aged: an assessment. Free Radic Res 36(12):1323–1329

    Article  PubMed  CAS  Google Scholar 

  • Reiter RJ, Paredes SD, Manchester LC, Tan DX (2009) Reducing oxidative/nitrosative stress: a newly-discovered genre for melatonin. Crit Rev Biochem Mol Biol 44(4):175–200

    Article  PubMed  CAS  Google Scholar 

  • Reiter RJ, Tan DX, Fuentes-Broto L (2010a) Melatonin: a multitasking molecule. Prog Brain Res 181:127–151

    Article  PubMed  CAS  Google Scholar 

  • Reiter RJ, Tan DX, Paredes SD, Fuentes-Broto L (2010b) Beneficial effects of melatonin in cardiovascular disease. Ann Med 42(4):276–285

    Article  PubMed  CAS  Google Scholar 

  • Riley T, Sontag E, Chen P, Levine A (2008) Transcriptional control of human p53-regulated genes. Nat Rev Mol Cell Biol 9(5):402–412

    Article  PubMed  CAS  Google Scholar 

  • Rippe C, Lesniewski L, Connell M, LaRocca T, Donato A, Seals D (2010) Short-term calorie restriction reverses vascular endothelial dysfunction in old mice by increasing nitric oxide and reducing oxidative stress. Aging Cell 9(3):304–312

    Article  PubMed  CAS  Google Scholar 

  • Rodella LF, Bonomini F, Rezzani R, Tengattini S, Hayek T, Aviram M, Keidar S, Coleman R, Bianchi R (2007) Atherosclerosis and the protective role played by different proteins in apolipoprotein E-deficient mice. Acta Histochem 109(1):45–51

    Article  CAS  Google Scholar 

  • Rodella LF, Favero G, Rossini C, Foglio E, Reiter RJ, Rezzani R (2010) Endothelin-1 as a potential marker of melatonin’s therapeutic effects in smoking-induced vasculopathy. Life Sci 87(17–18):558–564

    Article  PubMed  CAS  Google Scholar 

  • Schiffrin EL (2004) Remodeling of resistance arteries in essential hypertension and effects of antihypertensive treatment. Am J Hypertens 17(12 Pt 1):1192–1200

    Article  PubMed  CAS  Google Scholar 

  • Song G, Liu J, Zhao Z, Yu Y, Tian H, Yao S, Li G, Qin S (2011) Simvastatin reduces atherogenesis and promotes the expression of hepatic genes associated with reverse cholesterol transport in apoE-knockout mice fed high-fat diet. Lipids Health Dis 10:8

    Article  PubMed  CAS  Google Scholar 

  • Stein S, Lohmann C, Handschin C, Stenfeldt E, Borén J, Lüscher TF, Matter CM (2010) ApoE−/− PGC-1α−/− mice display reduced IL-18 levels and do not develop enhanced atherosclerosis. PLoS One 5(10):e13539

    Article  PubMed  Google Scholar 

  • Tajes M, Gutierrez-Cuesta J, Ortuño-Sahagun D, Camins A, Pallàs M (2009) Anti-aging properties of melatonin in an in vitro murine senescence model: involvement of the sirtuin 1 pathway. J Pineal Res 47(3):228–237

    Article  PubMed  CAS  Google Scholar 

  • Tan DX, Chen LD, Poeggeler B, Manchester LC, Reiter RJ (1993) Melatonin: a potent, endogenous hydroxyl radical scavenger. Endocr J 1:57–60

    Google Scholar 

  • Tang BL (2011) Sirt1’s systemic protective roles and its promise as a target in antiaging medicine. Transl Res 157(5):276–284

    Article  PubMed  CAS  Google Scholar 

  • Vaziri H, Dessain SK, Ng Eaton E, Imai SI, Frye RA, Pandita TK, Guarente L, Weinberg RA (2001) hSIR2(SIRT1) functions as an NAD-dependent p53 deacetylase. Cell 107(2):149–159

    Article  PubMed  CAS  Google Scholar 

  • Wang M, Khazan B, Lakatta EG (2010) Central arterial aging and angiotensin II signaling. Curr Hypertens Rev 6(4):266–281

    Article  PubMed  CAS  Google Scholar 

  • Welp A, Manz B, Peschke E (2010) Development and validation of a high throughput direct radioimmunoassay for the quantitative determination of serum and plasma melatonin (N-acetyl-5-methoxytryptamine) in mice. J Immunol Methods 358(1–2):1–8

    Article  PubMed  CAS  Google Scholar 

  • Yang NC, Song TY, Chen MY, Hu ML (2011) Effects of 2-deoxyglucose and dehydroepiandrosterone on intracellular NAD(+) level, SIRT1 activity and replicative lifespan of human Hs68 cells. Biogerontology 12(64):527–536

    Google Scholar 

  • Yatera Y, Shibata K, Furuno Y, Sabanai K, Morisada N, Nakata S, Morishita T, Toyohira Y, Wang KY, Tanimoto A, Sasaguri Y, Tasaki H, Nakashima Y, Shimokawa H, Yanagihara N, Otsuji Y, Tsutsui M (2010) Severe dyslipidaemia, atherosclerosis, and sudden cardiac death in mice lacking all NO synthases fed a high-fat diet. Cardiovasc Res 87(4):675–682

    Article  PubMed  CAS  Google Scholar 

  • Yu W, Fu YC, Chen CJ, Wang X, Wang W (2009) SIRT1: a novel target to prevent atherosclerosis. J Cell Biochem 108(1):10–13

    Article  PubMed  CAS  Google Scholar 

  • Zhang WJ, Bird KE, McMillen TS, LeBoeuf RC, Hagen TM, Frei B (2008) Dietary alpha-lipoic acid supplementation inhibits atherosclerotic lesion development in apolipoprotein E-deficient and apolipoprotein E/low-density lipoprotein receptor-deficient mice. Circulation 117(3):421–428

    Article  PubMed  CAS  Google Scholar 

  • Zhao R, Domann FE, Zhong W (2006) Apoptosis induced by selenomethionine and methioninase is superoxide mediated and p53 dependent in human prostate cancer cells. Mol Cancer Ther 5(12):3275–3284

    Article  PubMed  CAS  Google Scholar 

  • Zu Y, Liu L, Lee MY, Xu C, Liang Y, Man RY, Vanhoutte PM, Wang Y (2010) SIRT1 promotes proliferation and prevents senescence through targeting LKB1 in primary porcine aortic endothelial cells. Circ Res 106(8):1384–1393

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We sincerely thank Nathura s.r.l (Reggio Emilia, Italy) for courteously providing melatonin tablets. Thanks also to Prof. Reiter R.J. for his linguistic improvement and Miss Castrezzati Stefania for her technical support. This study was supported by Nathura s.r.l (Reggio Emilia, Italy) and by the grant (ex-60%) of the University of Brescia.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rita Rezzani.

About this article

Cite this article

Rodella, L.F., Favero, G., Rossini, C. et al. Aging and vascular dysfunction: beneficial melatonin effects. AGE 35, 103–115 (2013). https://doi.org/10.1007/s11357-011-9336-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11357-011-9336-z

Keywords

Navigation