Skip to main content

Advertisement

Log in

Estrogen deficiency does not decrease the in vitro osteogenic potential of rat adipose-derived mesenchymal stem cells

  • Published:
AGE Aims and scope Submit manuscript

Abstract

Osteoporosis due to estrogen deficiency is an increasing bone health issue worldwide: new strategies are being studied for regenerative medicine of bone pathologies in these patients. The most commonly used cells for tissue engineering therapy are the bone marrow mesenchymal stem cells (BMSCs), but they might be negatively affected by aging and estrogen deficiency. Besides the general advantages of adipose-derived mesenchymal stem cells (ADSCs) over BMSCs, ADSCs also seem to be less affected by aging than BMSCs, but in the literature, little is known about ADSCs in estrogen deficiency. The present study investigated the in vitro behavior of ADSCs, isolated from healthy (SHAM) and estrogen-deficient (OVX) rats. Phenotype, clonogenicity, viability, and osteogenic differentiation, at both cellular and molecular levels, were evaluated with or without osteogenic stimuli. Pro-inflammatory cytokines, growth factors, and adipogenic differentiation markers were also analyzed. There were no significant differences between OVX and SHAM ADSCs in some analyzed parameters. In addition, clonogenicity, osteopontin (Spp1) gene expression, alkaline phosphatase (ALP) activity at 2 weeks of culture, total collagen (COLL), osteocalcin (Bglap) gene expression and production, and matrix mineralization were significantly higher in OVX than in SHAM ADSCs. Besides the increase in some osteogenic markers, peroxisome proliferator-activated receptor gamma (Pparg) gene was also more expressed in OVX in osteogenic medium, with a concomitant estrogen receptor 1 (Esr1) gene expression decrease. These results underlined that ADSCs were not affected by estrogen deficiency in an osteogenic microenvironment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Aldahmash A, Zaher W, Al-Nbaheen M, Kassem M (2012) Human stromal (mesenchymal) stem cells: basic biology and current clinical use for tissue regeneration. Ann Saudi Med 32:68–77

    PubMed  Google Scholar 

  • Benisch P, Schilling T, Klein-Hitpass L, Frey SP, Seefried L, Raaijmakers N, Krug M, Regensburger M, Zeck S, Schinke T, Amling M, Ebert R, Jakob F (2012) The transcriptional profile of mesenchymal stem cell population in primary osteoporosis is distinct and shows overexpression of osteogenic inhibitors. Plos One 7:e45142. doi:10.1371/journal.pone.0045142

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Bonofiglio D, Gabriele S, Aquila S, Catalano S, Gentile M, Middea E, Giordano F, Antò S (2005) Estrogen receptor alpha binds to peroxisome proliferator-activated receptor response element and negatively interferes with peroxisome proliferator-activated receptor gamma signaling in breast cancer cells. Clin Cancer Res 11:6139–6147

    Article  CAS  PubMed  Google Scholar 

  • Boyce BF, Rosenberg E, de Papp AE, le Duong T (2012) The osteoclast, bone remodelling and treatment of metabolic bone disease. Eur J Clin Invest 42:1332–1341. doi:10.1111/j.1365-2362.2012.02717.x

    Article  CAS  PubMed  Google Scholar 

  • Calleja-Agius J, Brincat MP (2009) Effects of hormone replacement therapy on connective tissue: why is this important? Best Pract Res Clin Obstet Gynaecol 23:121–127. doi:10.1016/j.bpobgyn.2008.10.003

    Article  PubMed  Google Scholar 

  • Chen HT, Lee MJ, Chen CH, Chuang SC, Chang LF, Ho ML, Hung SH, Fu YC, Wang YH, Wang HI, Wang GJ, Kang L, Chang JK (2012) Proliferation and differentiation potential of human adipose-derived mesenchymal stem cells isolated from elderly patients with osteoporotic fractures. J Cell Mol Med 16:582–592. doi:10.1111/j.1582-4934.2011.01335.x

    Article  CAS  PubMed  Google Scholar 

  • Cui G, Leng H, Wang K, Wang J, Zhu S, Jia J, Chen X, Zhang W, Qin L, Bai W (2013) Effects of remifemin treatment on bone integrity and remodeling in rats with ovariectomy-induced osteoporosis. PLoS One 8:e82815. doi:10.1371/journal.pone.0082815

    Article  PubMed Central  PubMed  Google Scholar 

  • Dalle Carbonare L, Valenti MT, Zanatta M, Donatelli L, Lo Cascio V (2009) Circulating mesenchymal stem cells with abnormal osteogenic differentiation in patients with osteoporosis. Arthritis Rheum 60:3356–3365. doi:10.1002/art.24884

    Article  PubMed  Google Scholar 

  • de Girolamo L, Lopa S, Arrigoni E, Sartori MF, Baruffaldi Preis FW, Brini AT (2009) Human adipose-derived stem cells isolated from young and elderly women: their differentiation potential and scaffold interaction during in vitro osteoblastic differentiation. Cytotherapy 11:793–803. doi:10.3109/14653240903079393

    Article  PubMed  Google Scholar 

  • Fei J, Tamski H, Cook C, Santanam N (2013) MicroRNA regulation of adipose derived stem cells in aging rats. Plos One 8:1–11. doi:10.1371/journal.pone.0059238

    Google Scholar 

  • Fraser JK, Wulur I, Alfonso Z, Hedrick MH (2006) Fat tissue: an underappreciated source of stem cells for biotechnology. Trends Biotechnol 24:150–154

    Article  CAS  PubMed  Google Scholar 

  • Giavaresi G, Fini M, Giardino R, Salamanna F, Sartori M, Borsari V, Spriano S, Bellini CM, Brayda-Bruno M (2011) In vivo preclinical evaluation of the influence of osteoporosis on the anchorage of different pedicle screw designs. Eur Spine J 20:1289–1296. doi:10.1007/s00586-011-1831-5

    Article  PubMed Central  PubMed  Google Scholar 

  • Gimble JM, Nuttall ME (2012) The relationship between adipose tissue and bone metabolism. Clin Biochem 45:874–879. doi:10.1016/j.clinbiochem.2012.03.006

    Article  CAS  PubMed  Google Scholar 

  • Hoch AI, Binder BY, Genetos DC, Leach JK (2012) Differentiation-dependent secretion of proangiogenic factors by mesenchymal stem cells. PLoS One 7:e35579. doi:10.1371/journal.pone.0035579

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Hoogendoorn RJ, Lu ZF, Kroeze RJ, Bank RA, Wuisman PI, Helder MN (2008) Adipose stem cells for intervertebral disc regeneration: current status and concepts for the future. J Cell Mol Med 12:2205–2216. doi:10.1111/j.1582-4934.2008.00291.x

    Article  CAS  PubMed  Google Scholar 

  • Hoshiba T, Kawazoe N, Chen G (2012) The balance of osteogenic and adipogenic differentiation in human mesenchymal stem cells by matrices that mimic stepwise tissue development. Biomaterials 33:2015–2031. doi:10.1016/j.biomaterials.2011.11.061

    Article  Google Scholar 

  • Khan WS, Adesida AB, Tew SR, Andrew JG, Hardingham TE (2009) The epitope characterization and the osteogenic differentiation potential of human fat pad-derived stem cells is maintained with ageing in later life. Injury 40:150–157. doi:10.1016/j.injury.2008.05.029

    Article  CAS  PubMed  Google Scholar 

  • Kim D, Monaco E, Maki A, de Lima AS, Kong HJ, Hurley WL, Wheeler MB (2010) Morphologic and transcriptomic comparison of adipose- and bone-marrow-derived porcine stem cells cultured in alginate hydrogels. Cell Tissue Res 341:359–370. doi:10.1007/s00441-010-1015-3

    Article  PubMed  Google Scholar 

  • Kim H, Lee K, Ko CY, Kim HS, Shin HI, Kim T, Lee SH, Jeong D (2012) The role of nacreous factors in preventing osteoporotic bone loss through both osteoblast activation and osteoclast inactivation. Biomaterials 33:7489–7496. doi:10.1016/j.biomaterials.2012.06.098

    Article  CAS  PubMed  Google Scholar 

  • Li Y, Zou S, Wang D, Feng G, Bao C, Hu J (2010) The effect of hydrofluoric acid treatment on titanium implant osseointegration in ovariectomized rats. Biomaterials 31:3266–3273. doi:10.1016/j.biomaterials.2010.01.028

    Article  CAS  PubMed  Google Scholar 

  • Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) method. Methods 25:402–408

    Article  CAS  PubMed  Google Scholar 

  • Mirsaidi A, Kleinhans KN, Rimann M, Tiaden AN, Stauber M, Rudolph KL, Richards PJ (2012) Telomere length, telomerase activity and osteogenic differentiation are maintained in adipose-derived stromal cells from senile osteoporotic SAMP6 mice. J Tissue Eng Regen Med 6:378–390. doi:10.1002/term.440

    Article  CAS  PubMed  Google Scholar 

  • Mojallal A, Lequeux C, Shipkov C, Duclos A, Braye F, Rohrich R, Brown S, Damour O (2011) Influence of age and body mass index on the yield and proliferation capacity of adipose-derived stem cells. Aesthetic Plast Surg 35:1097–1105. doi:10.1007/s00266-011-9743-7

    Article  PubMed  Google Scholar 

  • Moon SJ, Ahn IE, Jung H, Yi H, Kim J, Kim Y, Kwok SK, Park KS, Min JK, Park SH, Kim HY, Ju JH (2013) Temporal differential effects of proinflammatory cytokines on osteoclastogenesis. Int J Mol Med 31:769–777. doi:10.3892/ijmm.2013.1269

    CAS  PubMed Central  PubMed  Google Scholar 

  • Pachon-Pena G, Yu G, Tucker A, Wu X, Vendrell J, Bunnell BA, Gimble JM (2010) Stromal stem cells from adipose tissue and bone marrow of age-matched female donors display distinct immunophenotypic profiles. J Cell Physiol 226:843–851. doi:10.1002/jcp.22408

    Article  Google Scholar 

  • Pino AM, Rosen CJ, Rodriguez JP (2012) In osteoporosis, differentiation of mesenchymal stem cells (MSCs) improves bone marrow adipogenesis. Biol Res 45:279–287. doi:10.4067/S0716-97602012000300009

    Article  PubMed  Google Scholar 

  • Ray R, Novotny NM, Crisostomo PR, Lahm T, Abarbanell A, Meldrum DR (2008) Sex steroids and stem cell function. Mol Med 14:493–501. doi:10.2119/2008-00004.Ray

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Rodriguez JP, Astudillo P, Rios S, Pino AM (2008) Involvement of adipogenic potential of human bone marrow mesenchymal stem cells (MSCs) in osteoporosis. Curr Stem Cell Res Ther 3:208–218

    Article  CAS  PubMed  Google Scholar 

  • Rodriguez JP, Rios S, Fernandez M, Santibanez F (2004) Differential activation of ERK1,2 MAP kinase signaling pathway in mesenchymal stem cells from control and osteoporotic postmenopausal women. J Cell Biochem 92:745–754

    Article  CAS  PubMed  Google Scholar 

  • Shi YY, Nacamuli RP, Salim A, Longaker MT (2005) The osteogenic potential of adipose-derived mesenchymal stem cells is maintained with aging. Plast Reconstruct Surg 116:1686–1696

    Article  CAS  Google Scholar 

  • Smith BJ, Bu SY, Wang Y, Rendina E, Lim YF, Marlow D, Clarke SL, Cullen DM, Lucas EA (2014) A comparative study of the bone metabolic response to dried plum supplementation and PTH treatment in adult, osteopenic ovariectomized rat. Bone 58:151–159. doi:10.1016/j.bone.2013.10.005

    Article  CAS  PubMed  Google Scholar 

  • Tobita M, Orbay H, Mizuno H (2011) Adipose-derived stem cells: current findings and future perspectives. Discov Med 11:160–170

    PubMed  Google Scholar 

  • Torricelli P, Veronesi F, Pagani S, Maffulli N, Masiero S, Frizziero A, Fini M (2012) In vitro tenocyte metabolism in aging and oestrogen deficiency. Age 35:2125–2136. doi:10.1007/s11357-012-9500-0

    Article  PubMed  Google Scholar 

  • Valenti MT, Garbin U, Pasini A, Zanatta M, Stranieri C, Manfro S, Zucal C, Dalle Carbonare L (2011) Role of Ox-PPACs in the differentiation of mesenchymal stem cells (MSCs) and Runx2 and PPARγ2 expression in MSCs-like of osteoporotic patients. Plos One 6:e20363. doi:10.1371/journal.pone.0020363

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Veronesi F, Torricelli P, Borsari V, Tschon M, Rimondini L, Fini M (2011) Mesenchymal stem cells in aging and osteoporotic population. Crit Rev Eukaryot Gene Expr 21:363–377

    Article  CAS  PubMed  Google Scholar 

  • Wan Y (2010) PPARγ in bone homeostasis. Trends Endocrinol Metab 21:722–728. doi:10.1016/j.tem.2010.08.006

    Article  CAS  PubMed  Google Scholar 

  • Wu W, Niklason L, Steinbacher DM (2013) The effect of age on human adipose-derived stem cells. Plast Reconstr Surg 131:27–37. doi:10.1097/PRS.0b013e3182729cfc

    Article  CAS  PubMed  Google Scholar 

  • Zhu M, Kohan E, Bradley J, Hedrick M, Benhaim P, Zuk P (2009) The effect of age on osteogenic, adipogenic and proliferative potential of female adipose-derived stem cells. J Tissue Eng Reg Med 3:290–301. doi:10.1002/term.165

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This paper was partially supported by Rizzoli Orthopaedic Institute, “5 PER MILLE Project” (CUPD31J09000260001). The authors wish to thank Dr. Luca Cattini (Laboratory of Immuno-rheumatology and Tissue Regeneration/RAMSES, Rizzoli Orthopedic Research Institute) for the valuable contribution regarding flow cytometry characterization.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Francesca Veronesi.

About this article

Cite this article

Veronesi, F., Pagani, S., Della Bella, E. et al. Estrogen deficiency does not decrease the in vitro osteogenic potential of rat adipose-derived mesenchymal stem cells. AGE 36, 9647 (2014). https://doi.org/10.1007/s11357-014-9647-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11357-014-9647-y

Keywords

Navigation