Skip to main content

Advertisement

Log in

Ageing and myeloid-derived suppressor cells: possible involvement in immunosenescence and age-related disease

  • Published:
AGE Aims and scope Submit manuscript

Abstract

Infections, cancer and autoimmune diseases occur more frequently in the elderly, and although many factors contribute to this, the age-related remodelling of the immune system, termed immunosenescence, plays a major role. Over the last two decades, studies have evaluated the effect of ageing on both the adaptive and innate arms of the immune system and demonstrated compromised function in several cells including lymphocytes (naïve, effector and memory), regulatory T and B cells, monocytes, neutrophils and NK cells. In addition, a well-documented feature of ageing is the increase in systemic inflammatory status (inflammageing), with raised serum levels of IL6, TNFα and CRP as well as reduced IL10. Recently, myeloid-derived suppressor cells have been the focus of many reports as these cells show immunosuppressive properties and are present in higher frequency during infections, cancer and autoimmunity. Importantly, there have been publications showing increased numbers of myeloid-derived suppressor cells in aged mice and humans. In this review, we discuss the current literature on myeloid-derived suppressor cells, their possible role in altered immune function in the elderly, and whether it may be possible to manipulate these cells to alleviate age-related immune dysfunction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Akbar AN, Beverly PC, Salmon M (2004) Will telomere erosion lead to a loss of T-cell memory? Nat Rev Immunol 4:737–743

    Article  CAS  PubMed  Google Scholar 

  • Alonso-Arias R, Moro-Garcia MA, López-Vázquez A, Rodrigo L, Baltar J, Garcia FMS, Jaurrieta JJ, López-Larrea C (2011) NKG2D expression in CD4+ T lymphocyte as a marker of senescence in the aged immune system. Age (Dordr) 33:591–605

    Article  CAS  Google Scholar 

  • Beerman I, Bhattacharya D, Zandi S, Sigvardsson M, Weissman IL, Bryder D, Rossi DJ (2010) Functionally distinct hematopoietic stem cells modulate hematopoietic lineage potential during aging by a mechanism of clonal expansion. Proc Natl Acad Sci U S A 107:5465–5470

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Beigel JH (2008) Influenza. Crit Care Med 36(9):2660–2666

    Article  PubMed Central  PubMed  Google Scholar 

  • Bingisser R, Tilbrook P, Holt P, Kees U (1998) Macrophage-derived nitric oxide regulates T-cell activation via reversible disruption of the Jak3/STAT5 signaling pathway. J Immunol 160:5729–5734

    CAS  PubMed  Google Scholar 

  • Busch A, Zeh D, Janzen V, Mügge LO, Wolf D, Fingerhut L, Hahn-Ast C, Maurer O, Brossart P, von Lilienfeld-Toal M (2014) Treatment with lenalidomide induces immunoactivating and counter-regulatory immunosuppressive changes in myeloma patients. Clin Exp Immunol 177:439–453

    Article  CAS  PubMed  Google Scholar 

  • Butcher SK, Chahal H, Nayak L, Sinclair A, Henriquez NV, Sapey E, O’Mahony D, Lord JM (2001) Senescence in innate immune responses: reduced neutrophil phagocytic capacity and CD16 expression in elderly humans. J Leukoc Biol 70:881–886

    CAS  PubMed  Google Scholar 

  • Cai W, Qing A, Guo P, Yan D, Hu F, Yang Q, Xu M, Fu Y, Zhou J, Tang X (2013) Clinical significance and functional studies of myeloid-derived suppressor cells in chronic hepatitis C patients. J Clin Immunol 33:798–808

    Article  CAS  PubMed  Google Scholar 

  • Chan TC, Hung IF, Luk LK, Shea YF, Chan FH, Woo PC, Chu LW (2013) Functional status of older nursing home residents can affect the efficacy of influenza vaccination. J Gerontol A Biol 68:324–330

    Article  CAS  Google Scholar 

  • Cheng P, Corzo CA, Luetteke N, Yu B, Nagaraj S, Bui MM, Ortiz M, Nacken W, Sorg C, Vogl T, Roth J, Gabrilovich DI (2008) Inhibition of dendritic cell differentiation and accumulation of myeloid-derived suppressor cells in cancer is regulated by S100A9 protein. J Exp Med 205:2235–2249

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Chinn IK, Blackburn CC, Manley NR, Sempowski GD (2012) Changes in primary lymphoid organs with aging. Semin Immunol 24:309–320

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Diaz-Montero CM, Salem ML, Nishimura MI, Garrett-Mayer E, Cole DJ, Montero AJ (2009) Increased circulating myeloid-derived suppressor cells correlated with clinical cancer stage, metastatic tumor burden, and doxorubicin-cyclophosphamide chemotherapy. Cancer Immunol Immunother 58:49–59

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Dranoff G, Jaffee E, Lazenby A, Golumbek P, Levitsky H, Brose K, Jackson V, Hamada H, Pardoll D, Mulligan RC (1993) Vaccination with irradiated tumor cells engineered to secrete murine granulocyte-macrophage colony-stimulating factor stimulates potent, specific, and long-lasting anti-tumor immunity. Proc Natl Acad Sci U S A 90:3539–3543

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • du Plessis N, Loebernberg L, Kriel M, von Groote-Bidlingmaier F, Ribechini E, Loxton AG, van Helden PD, Lutz MB, Walzl G (2013) Increased frequency of myeloid-derived suppressor cells during active tuberculosis and after recent mycobacterium tuberculosis infection suppresses T-cell function. Am J Respir Crit Care Med 188:724–732

    Article  PubMed  Google Scholar 

  • Duggal NA, Upton J, Phillips AC, Sapey E, Lord JM (2013) An age-related numerical and functional deficit in CD19 + CD24hiCD38hi B cells is associated with an increase in systemic autoimmunity. Aging Cell 12:873–881

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Enioutina EY, Bareyan D, Daynes RA (2011) A role for immature myeloid cells in immune senescence. J Immunol 186:697–707

    Article  CAS  PubMed  Google Scholar 

  • Feng PH, Lee KY, Chang YL, Chan YF, Kuo LW, Lin TY, Chung FT, Kuo CS, YU CT, Lin SM, Wang CH, Chow CL, Huang CD, Kuo HP (2013) CD14(+) S100A9(+) monocytic myeloid-derived suppressor cells and their clinical relevance in non-small cell lung cancer. Am J Respir Crit Care Med 186:1025–1036

    Article  Google Scholar 

  • Finke J, Ko J, Rini B, Rayman P, Ireland J, Cohen P (2011) MDSC as a mechanism of tumor escape from sunitinib mediated-anti-angiogenic therapy. Int Immunopharmacol 11:856–861

    Article  CAS  PubMed  Google Scholar 

  • Flores-Borja F, Bosma A, Ng D, Reddy V, Ehrenstein MR, Isenberg DA, Mauri C (2013) CD19 + CD24hiCD38hi B cells maintain regulatory T cells while limiting TH1 and TH17 differentiation. Sci Transl Med 5:173

    Article  Google Scholar 

  • Franceschi C (2007) Inflammaging as a major characteristic of old people: can it be prevented or cured? Nutr Rev 65:S173–S176

    Article  PubMed  Google Scholar 

  • Franceschi C, Bonafè M (2003) Centenarians as a model for healthy aging. Biochem Soc Trans 31:457

    Article  CAS  PubMed  Google Scholar 

  • Gabrilovich DI, Nagaraj S (2009) Myeloid-derived suppressor cells as regulators of the immune system. Nat Rev Immunol 9:162–174

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Gabrilovich D, Ishida T, Oyama T, Ran S, Kravtsov V, Nadaf S, Carbone DP (1998) Vascular endothelial growth factor inhibits the development of dendritic cells and dramatically affects the differentiation of multiple hematopoietic lineages in vivo. Blood 92:4150–4166

    CAS  PubMed  Google Scholar 

  • Grizzle WE, Xu X, Zhang S, Stockard CR, Liu C, Yu S, Wang J, Mountz JD, Zhang HG (2007) Age-related increase of tumor susceptibility is associated with myeloid-derived suppressor cell mediated suppression of T cell cytotoxicity in recombinant inbred BXD12 mice. Mech Ageing Dev 128:672–680

    Article  CAS  PubMed  Google Scholar 

  • Guerra-Laso JM, González-Garcia S, González-Cortés C, Diez-Tascón C, López-Medrano R, Rivero-Lezcano OM (2013) Macrophages from elders are more permissive to intracellular multiplication of Mycobacterium tuberculosis. Age (Dordr) 35:1235–1250

    Article  CAS  Google Scholar 

  • Haile LA, von Wasielewski R, Gamrekelashvili J, Krüger C, Bachmann O, Westendorf AM, Buer J, Liblau R, Manns MP, Korangy F, Greten TF (2008) Myeloid-derived suppressor cells in inflammatory bowel disease: a new immunoregulatory pathway. Gastroenterology 135:871–881

    Article  CAS  PubMed  Google Scholar 

  • Harari O, Liao JK (2004) Inhibition of MHC II gene transcription by nitric oxide and antioxidants. Curr Pharm Des 10:893–898

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Hazeldine J, Hampson P, Lord JM (2012) Reduced release and binding of perforin at the immunological synapse underlies the age-related decline in natural killer cell cytotoxicity. Aging Cell 11:751–759

    Article  CAS  PubMed  Google Scholar 

  • Hearps AC, Martin GE, Angelovich TA, Cheng WJ, Maisa A, Landay AL, Jawaroski A, Crowe SM (2012) Aging is associated with chronic innate immune activation and dysregulation of monocyte phenotype and function. Aging Cell 11:867–875

    Article  CAS  PubMed  Google Scholar 

  • Heim CE, Vidlak D, Ted S, Kozel JA, Holzapfel M, Muirhead DE, Kielian T (2014) Myeloid-derived suppressor cells contribute to Staphylococcus aureus orthopedic biofilm infection. J Immunol 192:3778–3792

    Article  CAS  PubMed  Google Scholar 

  • Heithoff DM, Enioutina EY, Bareyan D, Daynes RA, Mahan MJ (2008) Conditions that diminish myeloid-derived suppressor cell activities stimulate cross-protective immunity. Infect Immun 76:5191–5199

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Hoechst B, Gamrekelashvili J, Manns MP, Greten TF, Korangy F (2011) Plasticity of human Th17 cells an iTregs is orchestrated by different subsets of myeloid cells. Blood 117:6532–6541

    Article  CAS  PubMed  Google Scholar 

  • Hurez V, Daniel BJ, Sun L, Liu AJ, Ludwig SM, Kious MJ, Thibodeaux SR, Pandeswara S, Murthy K, Livi CB, Wall S, Brumlik MJ, Shin T, Zhang B, Curiel TJ (2012) Mitigating age-related immune dysfunction heightens the efficacy of tumor immunotherapy in aged mice. Cancer Res 72:2089–2099

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Hwang KA, Kim HR, Kang I (2009) Aging and human CD4+ regulatory T cells. Mech Ageing Dev 130:509–517

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Iannou M, Alissafi T, Lazaridis I, Deraos G, Matsoukas J, Gravanis A, Mastorodemos V, Plaitakis A, Sharpe A, Boumpas D, Verginins P (2012) Crucial role of granulocytic myeloid-derived suppressor cells in the regulation of central nervous system autoimmune disease. J Immunol 188:1136–1146

    Article  Google Scholar 

  • Iclozan C, Antonia S, Chiappori A, Chen DT, Gabrilovich D (2013) Therapeutic regulation of myeloid-derived suppressor cells and immune response to cancer vaccine in patients with extensive stage of small cell lung cancer. Cancer Immunol Immunother 62:909–918

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Irvine KM, Burns CJ, Wilks AF, Su S, Hume DA, Sweet MJ (2006) A CSF-1 receptor kinase inhibitor targets effector functions and inhibits pro-inflammatory cytokine production from murine macrophage populations. FASEB 20:1921–1923

    Article  CAS  Google Scholar 

  • Iwasa K, Yoshikawa H, Samuraki M, Shinohara M, Hamaguchi T, Ono K, Nakamura H, Yamada M (2014) Myasthenia gravis: predictive factors associated with the synchronized elevation of anti-acetylcholine receptor antibody titer in Kanazawa, Japan. J Neuroimmunol 267:97–101

    Article  CAS  PubMed  Google Scholar 

  • Jackson ML, Nelson JC, Weiss NS, Neuzil KM, Barlow W, Jackson LA (2008) Influenza vaccination and risk of community-acquired pneumonia in immunocompetent elderly people: a population-based, nested case–control study. Lancet 372:398–405

    Article  PubMed  Google Scholar 

  • Jagger A, Shomojima Y, Goronzy JJ, Weyand CM (2014) Regulatory T cells and the immune aging process: a mini review. Gerontology 60:130–137

    Article  CAS  PubMed  Google Scholar 

  • Jiao Z, Hua S, Wang W, Wang H, Gao J, Wang X (2013) Increased circulating myeloid-derived suppressor cells correlated negatively with Th17 cells in patients with rheumatoid arthritis. Scand J Rheumatol 42:85–90

    Article  CAS  PubMed  Google Scholar 

  • Jitschin R, Braun M, Büttner M, Dettmer-Wilde K, Bricks J, Berger J, Eckart MJ, Krause SW, Oefner PJ, Le Blanc K, Mackensen A, Mougiakakos D (2014) CLL-cells induce IDOhi CD14+HLA-DRlo myeloid-derived suppressor cells that inhibit T-cell responses and promote TRegs. Blood 124(5):750–760

  • Jordan KR, Amaria RN, Ramirez O, Callihan EB, Gao D, Borakove M, Manthey E, Borges VF, McCarter MD (2013) Myeloid-derived suppressor cells are associated with disease progression and decreased overall survival in advanced-stage melanoma patients. Cancer Immunol Immunother 62:1711–1722

  • Kalathil S, Lugade AA, Miller A, Iyer R, Thanavala Y (2013) Higher frequencies of GARP(+)CTLA-4(+)Foxp3(+) T regulatory cells and myeloid-derived suppressor cells in hepatocellular carcinoma patients are associated with impaired T-cell functionality. Cancer Res 73:2435–2444

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Kaufman HL, Kim DW, DeRaffele G, Mitcham J, Coffin RS, Kim-Schulze S (2010) Local and distant immunity induced by intralesional vaccination with an oncolytic herpes virus encoding GM-CSF in patients with stage IIIc and IV melanoma. Ann Surg Oncol 17:718–730

    Article  PubMed  Google Scholar 

  • Knippenberg S, Peelen E, Smolders J, Thewissen M, Menheere P, Cohen Tervaert JW, Hupperts R, Damoiseaux J (2011) Reduction in IL-10 producing B cells (Breg) in multiple sclerosis is accompanied by a reduced naïve/memory Breg ratio during a relapse but not in remission. J Neuroimmunol 239:80–86

    Article  CAS  PubMed  Google Scholar 

  • Ko JS, Zea AH, Rini BI, Ireland JL, Elson P, Cohen P, Golshayan A, Rayman PA, Wood L, Garcia J, Dreicer R, Bukowski R, Finke JH (2009) Sunitinib mediates reversal of myeloid-derived suppressor cell accumulation in renal cell carcinoma patients. Clin Cancer Res 15:2148–2157

    Article  CAS  PubMed  Google Scholar 

  • Krause SW, Oefner PJ, Le Branc K, Mackensen A, Mougiakakos D (2014) CLL-cells induce IDOhi CD14+HLA-DRlow myeloid derived suppressor cells that inhibit T-cell responses and promote Tregs. Blood. doi:10.1182/ blood-2013-12-546416

    Google Scholar 

  • Kurkó J, Vida A, Glant TT, Scanzello CR, Katz RS, Nair A, Mikecz K, Szekancz Z (2014) Identification of myeloid-derived suppressor cells in the synovial fluid of patients with rheumatoid arthritis: a pilot study. BMC Musculoskelet Disord 15:281

    Article  PubMed Central  PubMed  Google Scholar 

  • Kusmartsev S, Su Z, Heiser A, Dannuell J, Eruslanov E, Kübler H, Yancei D, Dahm P, Vieweg J (2008) Reversal of myeloid cell-mediated immunosuppression in patients with metastatic renal cell carcinoma. Clin Cancer Res 14:8270–8278

    Article  CAS  PubMed  Google Scholar 

  • Lages Cs, Suffia I, Velilla PA, Huang B, Warshaw G, Hildeman DA, Belkaid Y, Chougnet C (2008) Functional regulatory T cells accumulate in aged hosts and promote chronic infectious disease reactivation. J Immunol 181:1835–1848

  • Levin MJ (2012) Immune senescence and vaccines to prevent herpes zoster in older persons. Curr Opin Immunol 24:494–500

    Article  CAS  PubMed  Google Scholar 

  • Li H, Han Y, Guo Q, Zhang M, Cao X (2009) J Immunol 182:240–249

    Article  CAS  PubMed  Google Scholar 

  • Luycx A, Schouppe E, Rutgeerts O, Lenaerts C, Fevery S, Devos T, Dierickx M, Waer M, Van Ginderachter JA, Billiau AD (2012) G-CSF stem cell mobilization in human donors induces polymorphonuclear and mononuclear myeloid-derived suppressor cells. Clin Immunol 143:83–87

    Article  Google Scholar 

  • Ma C, Kapanadze T, Gamrekelashvili J, Manns MP, Korangy F, Greten TF (2012) Anti-Gr-1- antibody depletion fails to eliminate hepatic myeloid-derived suppressor cells in tumor-bearing mice. J Leukoc Biol 92:1199–1206

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Mandruzzato S, Solito S, Falisi E, Francescato S, Chiarion-Sileni V, Mocellin S, Zanon A, Rossi CR, Nitti D, Bront V, Zanovello P (2009) IL4Ralpha + myeloid-derived suppressor cells expansion in cancer patients. J Immunol 182:6562–6568

    Article  CAS  PubMed  Google Scholar 

  • Mistry M, Parkin DM, Ahmad AS, Sasieni P (2011) Cancer incidence in the United Kingdom: projections to the year 2030. Br J Cancer 105:1795–1803

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Mitchell WA, Lang PO, Aspinall R (2010) Tracing thymic output in older individuals. Clin Exp Immunol 161:497–503

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Monto AS (2010) Seasonal influenza and vaccination coverage. Vaccine 28(S4):D33–D44

    Article  PubMed  Google Scholar 

  • Morales JK, Kmieciak M, Graham L, Feldmesser M, Bear HD, Manjili MH (2009) Adoptive transfer of HER2/neu-specific T cells expanded with alternative gamma chain cytokines mediate tumor regression when combined with the depletion of myeloid-derived suppressor cells. Cancer Immunol Immunother 58:941–953

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Moro-Garcia MA, Alonso-Arias R, López-Larrea C (2013) When aging reaches CD4+ T-cells: phenotypic and functional changes. Front Immunol 4:107

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Nefedova Y, Fishman M, Sherman S, Wang X, Beg AA, Gabrilovich DI (2007) Mechanism of all-trans retinoic acid effect on tumor-associated myeloid-derived suppressor cells. Cancer Res 76:11021–11028

    Article  Google Scholar 

  • NICER: Foundation National Institute for Cancer Epidemiology and Registration (NICER) (2014) http://www.nicer.org/assets/files/i5y8409ch.pdf. Accessed May 21, 2014

  • Ochoa JB, Strange J, Kearney P, Gellin G, Endean E, Fitzpatrick E (2001) Effects of L-arginine o the proliferation of T lymphocyte subpopulations. JPEN J Parenter Enteral Nutr 25:23–29

    Article  CAS  PubMed  Google Scholar 

  • Onyema OO, Njemini R, Bautmans I, Renmans W, De Waele M, Mets T (2012) Cellular aging and senescence characteristics of human T-lymphocytes. Biogerontology 13:169–181

    Article  CAS  PubMed  Google Scholar 

  • Panda A, Arjona A, Sapey E, Bai F, Fikrig E, Montgomery RR, Lord JM, Shaw AC (2009) Human innate immunosenescence: causes and consequences for immunity in old age. Trends Immunol 30:325–333

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Pico de Coaña Y, Pschkel I, Gentilcore G, Mao Y, Nyström M, Hanssom J, Masucci G, Kiessling R (2013) Ipilimumab treatment results in an early decrease in the frequency of circulating granulocytic myeloid-derived suppressor cells as well as their Arginase1 production. Cancer Immunol Res 1:158–162

    Article  PubMed  Google Scholar 

  • Pico de Coaña Y, Masucci G, Hansson J, Kiessling R (2014) Myeloid-derived suppressor cells and their role in CTLA-4 blockade therapy. Cancer Immunol Immunother 63:977–983

    Article  PubMed  Google Scholar 

  • Pohla H, Burchner A, Stadlbauer B, Frankenberger B, Stevanovic S, Walter S, Frank R, Schwachula T, Olek S, Kopp J, Willimsky G, Stief CG, Hofstetter A, Pezzutto A, Blankenstein T, Oberneder R, Schendel DJ (2013) High immune response rates and decreased frequencies of regulatory T cells in metastatic renal cell carcinoma patients after tumor cell vaccination. Mol Med 18:1499–1508

    PubMed  Google Scholar 

  • Poschke I, Mougiakakos D, Hansson J, Masucci GV, Kiessling R (2010) Immature immunosuppressive CD14 + HLA-DR-/low cells in melanoma patients are Stat3hi and overexpress CD80, CD83, and DC-sign. Cancer Res 70:4335–4345

    Article  CAS  PubMed  Google Scholar 

  • Qin A, Cai W, Pan T, Wu K, Yang Q, Wang N, Liu Y, Yan D, Hu F, Guo P (2013) Expansion of monocytic myeloid-derived suppressor cells dampens T cell function in HIV-1-seropositive individuals. J Virol 87:1477–1490

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Rivoltini L, Carrabba M, Huber V, Castelli C, Novellino L, Dalerba P, Mortarini R, Arancia G, Anichini A, Fais S, Parmiani G (2002) Immunity to cancer: attack and escape in T lymphocyte-tumor cell interaction. Immunol Rev 188:97–113

    Article  CAS  PubMed  Google Scholar 

  • Rodriguez PC, Quiceno DG, Ochoa AC (2007) L-arginine availability regulates T-lymphocyte cell-cycle progression. Blood 109:1568–1573

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Ryba-Stanislawowska M, Skrzypkowska M, Myslowska J, Mysliwiec M (2013) The serum IL-6 profile and Treg/Th17 peripheral cell populations in patients with type 1 diabetes. Mediator Inflamm. doi:10.1155/2013/205284

    Google Scholar 

  • Schilling B, Sucker A, Griewank K, Zhao F, Weide B, Görgens A, Giebel B, Schadendorf D, Paschen A (2013) Vemurafenib reverses immunosuppression by myeloid-derived suppressor cells. Int J Cancer 133:1653–1663

    Article  CAS  PubMed  Google Scholar 

  • Schimtt V, Rink L, Uciechowski P (2013) The Th17/Treg imbalance is disturbed during aging. Exp Gerontol 48:1379–1386

    Article  Google Scholar 

  • Schmielau J, Finn OJ (2001) Activated granulocytes and granulocyte derived hydrogen peroxide are the underlying mechanism of suppression of T-cell function in advanced cancer patients. Cancer Res 61:4756–4760

    CAS  PubMed  Google Scholar 

  • Serafini P, Carbley R, Noonan KA, Tan G, Bronte V, Borrello I (2004) High-dose granulocyte-macrophage colony-stimulating factor-producing vaccines impair the immune response through the recruitment of myeloid suppressor cells. Cancer Res 64:6337–6343

    Article  CAS  PubMed  Google Scholar 

  • Su DM, Aw D, Palmer DB (2013) Immunosenescence: a product of the environment? Curr Opin Immunol 25:498–503

    Article  CAS  PubMed  Google Scholar 

  • Sunderkötter C, Nikolic T, Dillon MJ, Van Rooijen N, Stehling M, Drevets DA, Leenen PJ (2004) Subpopulations of mouse blood monocytes differ in maturation stage and inflammatory response. J Immunol 172:4410–4417

    Article  PubMed  Google Scholar 

  • Tam JW, Kullas AL, Mena P, Bliska JB, van der Velden AW (2014) CD11b+Ly6Chi Ly6G immature myeloid cells recruited in response to Salmonella enterica Serovar Typhimurium infection exhibit protective and immunosuppressive properties. Infect Immun 82:2606–2614

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Tarhini AA, Edington H, Butterfield LH, Lin Y, Shuai Y, Tawbi H, Sander C, Yin Y, Holtzman M, Johnson J, Rao UN, Kirkwood JM (2014) Immune monitoring of the circulation and the tumor microenvironment in patients with regionally advanced melanoma receiving neoadjuvant ipilimumab. PLoS One 9(2):e87705

    Article  PubMed Central  PubMed  Google Scholar 

  • Thaci B, Ahmed AU, Ulasov IV, Wainwright DA, Nigam P, Auffinger B, Tobias AL, Han Y, Zhang L, Moon KS, Lesniak MS (2014) Depletion of myeloid-derived suppressor cells during interleukin-12 immunogene therapy does not confer a survival advantage in experimental malignant glioma. Cancer Gene Ther 21:38–44

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Trager N, Smith A, Wallace Iv G, Azuma M, Inoue J, Beeson C, Haque A, Banik NL (2014) Effects of a novel orally administered calpain inhibitor SNJ-1945 on immunomodulation and neurodegeneration in a murine model of multiple sclerosis. J Neurochem. doi:10.1111/jnc.12659

    PubMed  Google Scholar 

  • Tsiganov EM, Verbina EM, Radaeva TV, Sosunov VV, Kosmiadi GA, Nikitina IY, Lyadova IV (2014) Gr-1dimCD11b + immature myeloid-derived suppressor cells but not neutrophils are markers of lethal tuberculosis infection in mice. J Immun 192:4718–4727

    Article  CAS  PubMed  Google Scholar 

  • Ugel S, Delpozzo F, Desantis G, Papalini F, Simonato F, Sonda N, Ziolio S, Bronte V (2009) Therapeutic targeting of myeloid-derived suppressor cells. Curr Opin Pharmacol 9:470–481

    Article  CAS  PubMed  Google Scholar 

  • Valencia X, Yarboro C, Illei G, Lipsky PE (2007) Deficient CD4 + CD25high T regulatory cell function in patients with active systemic lupus erythematosus. J Immunol 178:2579–2588

    Article  CAS  PubMed  Google Scholar 

  • Verschoor CP, Johnstone J, Millar J, Dorrington MG, Habibagahi M, Lelic A, Loeb M, Bramson JL, Bowdish DME (2013) Blood CD33(+)HLA-DR(−) myeloid-derived suppressor cells are increased with age and a history of cancer. J Leukoc Biol 93:633–637

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Vollbrecht T, Stirner R, Tufman A, Roider J, Huber RM, Bogner JR, Lechner A, Bourquin C, Draenert R (2012) Chronic progressive HIV-1 infection is associated with elevated levels of myeloid-derived suppressor cells. AIDS 26:F31–F37

    Article  CAS  PubMed  Google Scholar 

  • Vuk-Pavlović BPA, Lin Y, Qin R, Szumlanski CL, Zhao X, Dietz AB (2010) Immunosuppressive CD14 + HLA-DRlow/- monocytes in prostate cancer. Prostate 70:443–455

    PubMed Central  PubMed  Google Scholar 

  • Wenish C, Patruta S, Daxböck F, Krause R, Hörl W (2000) Effect of age on human neutrophil function. J Leukoc Biol 67:40–45

    Google Scholar 

  • World Health Organization (2005) Influenza vaccines. Wkly Epidemiol Rec 80(33):279–287

    Google Scholar 

  • World Health Organization (WHO) (2011). Influenza (Seasonal). Fact sheet N°211. April 2009. [updated 2011]. Available from: http://www.who.int/mediacentre/factsheets/fs211/en/. Accessed November 30, 2011

  • Yang B, Wang X, Jiang J, Zhai F, Cheng X (2014) Identification of 244-expressing myeloid-derived suppressor cells in patients with active tuberculosis. Immunol Lett 158:66–72

    Article  CAS  PubMed  Google Scholar 

  • Yao X, Hamilton RG, Weng NP, Xue QL, Bream JH, Li H, Tian J, Yeh SH, Resnick B, Xu X, Walston J, Fried LP, Leng SX (2011) Frailty is associated with impairment of vaccine-induced antibody response and increase in post-vaccination influenza infection in community-dwelling older adults. Vaccine 29:5015–5021

    Article  PubMed Central  PubMed  Google Scholar 

  • Youn JI, Nagaraj S, Collazo M, Gabrilovich DI (2008) Subsets of myeloid-derived suppressor cells in tumor-bearing mice. J Immunol 181:5791–5802

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Yu J, Du W, Yan F, Wang Y, Li H, Cao S, Yu W, Shen C, Liu J, Ren X (2013) Myeloid-derived suppressor cells suppress antitumor immune responses through IDO expression and correlate with lymph node metastasis in patients with breast cancer. J Immunol 190:3783–3797

    Article  CAS  PubMed  Google Scholar 

  • Zea AH, Rodriguez PC, Atkins MB, Hernandez C, Signoretti S, Zabaleta J, McDermott D, Quiceno D, Youmans A, O’Neill A, Mier J, Ochoa AC (2005) Arginase-producing myeloid suppressor cells in renal cell carcinoma patients: A mechanism of tumor evasion. Cancer Res 65:3044–3048

    CAS  PubMed  Google Scholar 

  • Zeng QL, Yang B, Sun HQ, Feng GH, Jin L, Zou ZS, Zhang Z, Zhang JY, Wang FS (2014) Myeloid-derived suppressor cells are associated with viral persistence and down regulation of TCR ζ chain expression on CD8+ T cells in chronic hepatitis C patients. Mol Cells 37:66–73

    Article  PubMed Central  PubMed  Google Scholar 

  • Zhu B, Bando Y, Xiao S, Yang K, Anderson AC, Kichroo VK, Khoury SJ (2007) CD11b + Ly-6Chi suppressive monocytes in experimental autoimmune encephalomyelitis. J Immunol 179:5228–5237

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by FAPESP São Paulo Research Foundation (2012/51747-6; 2013/07467-1), National Institute of Science and Technology in Toxins (INCTTOX), Council of Technological and Scientific Development (CNPq)

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Valquiria Bueno.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bueno, V., Sant’Anna, O.A. & Lord, J.M. Ageing and myeloid-derived suppressor cells: possible involvement in immunosenescence and age-related disease. AGE 36, 9729 (2014). https://doi.org/10.1007/s11357-014-9729-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11357-014-9729-x

Keywords

Navigation