Skip to main content

Advertisement

Log in

Early manifestation of gait alterations in the Tg2576 mouse model of Alzheimer’s disease

  • Original Article
  • Published:
GeroScience Aims and scope Submit manuscript

Abstract

There is strong clinical evidence that multifaceted gait abnormalities may be manifested at early stages of Alzheimer’s disease (AD), are related to cognitive decline, and can be used as an early biomarker to identify patients at risk of progressing to full-blown dementia. Despite their importance, gait abnormalities have not been investigated in mouse models of AD, which replicate important aspects of the human disease. The Tg2576 is frequently used in AD research to test therapeutic interventions targeting cellular mechanisms contributing to the genesis of AD. This transgenic mouse strain overexpresses a mutant form of the 695 amino acid isoform of human amyloid precursor protein with K670N and M671L mutations (APPK670/671L) linked to early-onset familial AD. Tg2576 mice exhibit impaired cognitive functions and increased cortical and hippocampal soluble β-amyloid levels starting from 5 months of age and increased insoluble β-amyloid levels and amyloid plaques that resemble senile plaques associated with human AD by 13 months of age. To demonstrate early manifestations of gait dysfunction in this relevant preclinical model, we characterized gait and motor performance in 10-month-old Tg2576 mice and age-matched littermate controls using the semi-automated, highly sensitive, Catwalk XT system. We found that Tg2576 mice at the pre-plaque stage exhibited significantly altered duty cycle and step patterns and decreased stride length and stride time. Base-of-support, stride time variability, stride length variability, cadence, phase dispersions and gait symmetry indices were unaltered. The presence of measurable early gait abnormalities during the pre-plaque stages of AD in this relevant preclinical mouse model has direct translational relevance and supports the view that longitudinal monitoring of gait performance could be used in addition to behavioral testing to evaluate progression of the disease and to assess treatment efficacy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Tosto G, Monsell SE, Hawes SE, Mayeux R. Pattern of extrapyramidal signs in Alzheimer’s disease. J Neurol. 2015;262:2548–56.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Verghese J, Lipton RB, Hall CB, Kuslansky G, Katz MJ, Buschke H. Abnormality of gait as a predictor of non-Alzheimer’s dementia. N Engl J Med. 2002;347:1761–8.

    Article  PubMed  Google Scholar 

  3. Verghese J, Robbins M, Holtzer R, Zimmerman M, Wang C, Xue X, Lipton RB. Gait dysfunction in mild cognitive impairment syndromes. J Am Geriatr Soc. 2008;56:1244–51.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Verghese J, Wang C, Lipton RB, Holtzer R. Motoric cognitive risk syndrome and the risk of dementia. J Gerontol A Biol Sci Med Sci. 2013;68:412–8.

    Article  PubMed  Google Scholar 

  5. Waite LM, Grayson DA, Piguet O, Creasey H, Bennett HP, Broe GA. Gait slowing as a predictor of incident dementia: 6-year longitudinal data from the Sydney Older Persons Study. J Neurol Sci. 2005;229–230:89–93.

    Article  PubMed  Google Scholar 

  6. Rucco R, Agosti V, Jacini F, Sorrentino P, Varriale P, De Stefano M, Milan G, Montella P, Sorrentino G. Spatio-temporal and kinematic gait analysis in patients with Frontotemporal dementia and Alzheimer’s disease through 3D motion capture. Gait Posture. 2017;52:312–7.

    Article  PubMed  Google Scholar 

  7. Belghali M, Chastan N, Cignetti F, Davenne D, Decker LM. Loss of gait control assessed by cognitive-motor dual-tasks: pros and cons in detecting people at risk of developing Alzheimer’s and Parkinson’s diseases. Geroscience. 2017;39:305–29.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Isik AT, Soysal P, Usarel C. Effects of acetylcholinesterase inhibitors on balance and gait functions and orthostatic hypotension in elderly patients with Alzheimer disease. Am J Alzheimers Dis Other Demen. 2016;31:580–4.

    Article  PubMed  Google Scholar 

  9. Gillain S, Drame M, Lekeu F, Wojtasik V, Ricour C, Croisier JL, Salmon E, Petermans J. Gait speed or gait variability, which one to use as a marker of risk to develop Alzheimer disease? A pilot study. Aging Clin Exp Res. 2016;28:249–55.

    Article  CAS  PubMed  Google Scholar 

  10. Castrillo A, Olmos LM, Rodriguez F, Duarte J. Gait disorder in a cohort of patients with mild and moderate Alzheimer’s disease. Am J Alzheimers Dis Other Demen. 2016;31:257–62.

    Article  CAS  PubMed  Google Scholar 

  11. Cedervall Y, Halvorsen K, Aberg AC. A longitudinal study of gait function and characteristics of gait disturbance in individuals with Alzheimer’s disease. Gait Posture. 2014;39:1022–7.

    Article  PubMed  Google Scholar 

  12. Wittwer JE, Webster KE, Hill K. Reproducibility of gait variability measures in people with Alzheimer’s disease. Gait Posture. 2013;38:507–10.

    Article  PubMed  Google Scholar 

  13. Olazaran J, Hernandez-Tamames JA, Molina E, Garcia-Polo P, Dobato JL, Alvarez-Linera J, Martinez-Martin P. Clinical and anatomical correlates of gait dysfunction in Alzheimer’s disease. J Alzheimers Dis. 2013;33:495–505.

    Article  PubMed  Google Scholar 

  14. Nadkarni NK, Mawji E, McIlroy WE, Black SE. Spatial and temporal gait parameters in Alzheimer’s disease and aging. Gait Posture. 2009;30:452–4.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Merory JR, Wittwer JE, Rowe CC, Webster KE. Quantitative gait analysis in patients with dementia with Lewy bodies and Alzheimer’s disease. Gait Posture. 2007;26:414–9.

    Article  PubMed  Google Scholar 

  16. Allan LM, Ballard CG, Burn DJ, Kenny RA. Prevalence and severity of gait disorders in Alzheimer’s and non-Alzheimer’s dementias. J Am Geriatr Soc. 2005;53:1681–7.

    Article  PubMed  Google Scholar 

  17. O’Keeffe ST, Kazeem H, Philpott RM, Playfer JR, Gosney M, Lye M. Gait disturbance in Alzheimer’s disease: a clinical study. Age Ageing. 1996;25:313–6.

    Article  CAS  PubMed  Google Scholar 

  18. Alexander NB, Mollo JM, Giordani B, Ashton-Miller JA, Schultz AB, Grunawalt JA, Foster NL. Maintenance of balance, gait patterns, and obstacle clearance in Alzheimer’s disease. Neurology. 1995;45:908–14.

    Article  CAS  PubMed  Google Scholar 

  19. Visser H. Gait and balance in senile dementia of Alzheimer’s type. Age Ageing. 1983;12:296–301.

    Article  CAS  PubMed  Google Scholar 

  20. Pieruccini-Faria F, Black SE, Masellis M, Smith EE, Almeida QJ, Li KZH, Bherer L, Camicioli R, Montero-Odasso M. Gait variability across neurodegenerative and cognitive disorders: results from the Canadian Consortium of Neurodegeneration in Aging (CCNA) and the Gait and Brain Study. Alzheimers Dement. 2021. https://doi.org/10.1002/alz.12298.

  21. Parihar R, Mahoney JR, Verghese J. Relationship of gait and cognition in the elderly. Curr Transl Geriatr Exp Gerontol Rep. 2013;2:167–73.

  22. Ungvari Z, Tarantini S, Hertelendy P, Valcarcel-Ares MN, Fulop GA, Logan S, Kiss T, Farkas E, Csiszar A, Yabluchanskiy A. Cerebromicrovascular dysfunction predicts cognitive decline and gait abnormalities in a mouse model of whole brain irradiation-induced accelerated brain senescence. Geroscience. 2017;39:33–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Toth P, Tarantini S, Springo Z, Tucsek Z, Gautam T, Giles CB, Wren JD, Koller A, Sonntag WE, Csiszar A, Ungvari Z. Aging exacerbates hypertension-induced cerebral microhemorrhages in mice: role of resveratrol treatment in vasoprotection. Aging Cell. 2015;14:400–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Tarantini S, Yabluchanskiy A, Fulop GA, Kiss T, Perz A, O’Connor D, Johnson E, Sorond F, Ungvari ZI, Csiszar A. Age-related alterations in gait function in freely moving male C57BL/6 mice: translational relevance of decreased cadence and increased gait variability. J Gerontol A Biol Sci Med Sci. 2019;74:1417–21.

    Article  PubMed  Google Scholar 

  25. Tarantini S, Hertelendy P, Tucsek Z, Valcarcel-Ares MN, Smith N, Menyhart A, Farkas E, Hodges EL, Towner R, Deak F, Sonntag WE, Csiszar A, Ungvari Z, Toth P. Pharmacologically-induced neurovascular uncoupling is associated with cognitive impairment in mice. J Cereb Blood Flow Metab. 2015;35:1871–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Beauchet O, Launay CP, Sekhon H, Barthelemy JC, Roche F, Chabot J, Levinoff EJ, Allali G. Association of increased gait variability while dual tasking and cognitive decline: results from a prospective longitudinal cohort pilot study. GeroScience. 2017;39(4):439–45. https://doi.org/10.1007/s11357-017-9992-8.

  27. Decker LM, Cignetti F, Hunt N, Potter JF, Stergiou N, Studenski SA. Effects of aging on the relationship between cognitive demand and step variability during dual-task walking. Age (Dordr). 2016;38:363–75.

    Article  PubMed Central  Google Scholar 

  28. Chau T, Young S, Redekop S. Managing variability in the summary and comparison of gait data. J Neuroeng Rehabil. 2005;2:22.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Seo JS, Leem YH, Lee KW, Kim SW, Lee JK, Han PL. Severe motor neuron degeneration in the spinal cord of the Tg2576 mouse model of Alzheimer disease. J Alzheimers Dis. 2010;21:263–76.

    Article  CAS  PubMed  Google Scholar 

  30. Webster KE, Merory JR, Wittwer JE. Gait variability in community dwelling adults with Alzheimer disease. Alzheimer Dis Assoc Disord. 2006;20:37–40.

    Article  PubMed  Google Scholar 

  31. Nakamura T, Meguro K, Sasaki H. Relationship between falls and stride length variability in senile dementia of the Alzheimer type. Gerontology. 1996;42:108–13.

    Article  CAS  PubMed  Google Scholar 

  32. Montero-Odasso M, Oteng-Amoako A, Speechley M, Gopaul K, Beauchet O, Annweiler C, Muir-Hunter SW. The motor signature of mild cognitive impairment: results from the gait and brain study. J Gerontol A Biol Sci Med Sci. 2014;69:1415–21.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Rosso AL, Olson Hunt MJ, Yang M, Brach JS, Harris TB, Newman AB, Satterfield S, Studenski SA, Yaffe K, Aizenstein HJ, Rosano C. Higher step length variability indicates lower gray matter integrity of selected regions in older adults. Gait Posture. 2014;40:225–30.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Studenski S, Perera S, Patel K, Rosano C, Faulkner K, Inzitari M, Brach J, Chandler J, Cawthon P, Connor EB, Nevitt M, Visser M, Kritchevsky S, Badinelli S, Harris T, Newman AB, Cauley J, Ferrucci L, Guralnik J. Gait speed and survival in older adults. JAMA. 2011;305:50–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Verghese J, Holtzer R, Lipton RB, Wang C. Quantitative gait markers and incident fall risk in older adults. J Gerontol A Biol Sci Med Sci. 2009;64:896–901.

    Article  PubMed  Google Scholar 

  36. Verghese J, Wang C, Lipton RB, Holtzer R, Xue X. Quantitative gait dysfunction and risk of cognitive decline and dementia. J Neurol Neurosurg Psychiatry. 2007;78:929–35.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Verlinden VJ, van der Geest JN, Hoogendam YY, Hofman A, Breteler MM, Ikram MA. Gait patterns in a community-dwelling population aged 50 years and older. Gait Posture. 2013;37:500–5.

    Article  CAS  PubMed  Google Scholar 

  38. Maricelli JW, Lu QL, Lin DC, Rodgers BD. Trendelenburg-like gait, instability and altered step patterns in a mouse model for limb girdle muscular dystrophy 2i. PLoS ONE. 2016;11:e0161984.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  39. Irizarry MC, McNamara M, Fedorchak K, Hsiao K, Hyman BT. APPSw transgenic mice develop age-related A beta deposits and neuropil abnormalities, but no neuronal loss in CA1. J Neuropathol Exp Neurol. 1997;56:965–73.

    Article  CAS  PubMed  Google Scholar 

  40. Whitney Schroer KW, Renee Ehrenstrom, Vince Butano, K. Jene James, Benjamin F. Timson, Scott D. Zimmerman. Early gait alterations in the TG2576 mouse model of Alzheimer's disease: a preliminary analysis. Alzheimer's Association International Conference on Alzheimer's Disease 2010. pages S215-S216.

  41. Beauchet O, Allali G, Berrut G, Hommet C, Dubost V, Assal F. Gait analysis in demented subjects: interests and perspectives. Neuropsychiatr Dis Treat. 2008;4:155–60.

    Article  PubMed  PubMed Central  Google Scholar 

  42. Atkinson HH, Rosano C, Simonsick EM, Williamson JD, Davis C, Ambrosius WT, Rapp SR, Cesari M, Newman AB, Harris TB, Rubin SM, Yaffe K, Satterfield S, Kritchevsky SB. Cognitive function, gait speed decline, and comorbidities: the health, aging and body composition study. J Gerontol A Biol Sci Med Sci. 2007;62:844–50.

    Article  PubMed  Google Scholar 

  43. Callisaya ML, Beare R, Phan T, Blizzard L, Thrift AG, Chen J, Srikanth VK. Progression of white matter hyperintensities of presumed vascular origin increases the risk of falls in older people. J Gerontol A Biol Sci Med Sci. 2015;70:360–6.

    Article  PubMed  Google Scholar 

  44. Fitzpatrick AL, Buchanan CK, Nahin RL, Dekosky ST, Atkinson HH, Carlson MC, Williamson JD. Associations of gait speed and other measures of physical function with cognition in a healthy cohort of elderly persons. J Gerontol A Biol Sci Med Sci. 2007;62:1244–51.

    Article  PubMed  Google Scholar 

  45. Nadkarni NK, Nunley KA, Aizenstein H, Harris TB, Yaffe K, Satterfield S, Newman AB, Rosano C. Association between cerebellar gray matter volumes, gait speed, and information-processing ability in older adults enrolled in the Health ABC study. J Gerontol A Biol Sci Med Sci. 2014;69:996–1003.

    Article  PubMed  Google Scholar 

  46. Sorond FA, Galica A, Serrador JM, Kiely DK, Iloputaife I, Cupples LA, Lipsitz LA. Cerebrovascular hemodynamics, gait, and falls in an elderly population: MOBILIZE Boston Study. Neurology. 2010;74:1627–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Sorond FA, Kiely DK, Galica A, Moscufo N, Serrador JM, Iloputaife I, Egorova S, Dell’Oglio E, Meier DS, Newton E, Milberg WP, Guttmann CR, Lipsitz LA. Neurovascular coupling is impaired in slow walkers: the MOBILIZE Boston Study. Ann Neurol. 2011;70:213–20.

    Article  PubMed  PubMed Central  Google Scholar 

  48. Watson NL, Rosano C, Boudreau RM, Simonsick EM, Ferrucci L, Sutton-Tyrrell K, Hardy SE, Atkinson HH, Yaffe K, Satterfield S, Harris TB, Newman AB. Executive function, memory, and gait speed decline in well-functioning older adults. J Gerontol A Biol Sci Med Sci. 2010;65:1093–100.

    Article  CAS  PubMed  Google Scholar 

  49. Tian Q, Chastan N, Bair WN, Resnick SM, Ferrucci L, Studenski SA. The brain map of gait variability in aging, cognitive impairment and dementia—a systematic review. Neurosci Biobehav Rev. 2017;74:149–62.

    Article  PubMed  PubMed Central  Google Scholar 

  50. Callisaya ML, Blizzard L, Schmidt MD, McGinley JL, Srikanth VK. Ageing and gait variability—a population-based study of older people. Age Ageing. 2010;39:191–7.

    Article  PubMed  Google Scholar 

  51. Dommershuijsen LJ, Isik BM, Darweesh SKL, van der Geest JN, Ikram MK, Ikram MA. Unraveling the association between gait and mortality-one step at a time. J Gerontol A Biol Sci Med Sci. 2020;75:1184–90.

    Article  PubMed  Google Scholar 

  52. Donoghue OA, Leahy S, Kenny RA. Longitudinal associations between gait, falls and disability in community-dwelling older adults with type II diabetes mellitus: findings from The Irish Longitudinal Study on Ageing (TILDA). J Gerontol A Biol Sci Med Sci. 2021;76(5):906–13. https://doi.org/10.1093/gerona/glaa263.

  53. Handing E, Rapp SR, Chen SH, Rejeski J, Wiberg M, Bandeen-Roche K, Craft S, Kitzman D, Ip EH. Heterogeneity in association between cognitive function and gait speed among older adults: an integrative data analysis study. J Gerontol A Biol Sci Med Sci. 2021;76(4):710–15. https://doi.org/10.1093/gerona/glaa211.

  54. He L, de Souto Barreto P, Giudici KV, Aggarwal G, Nguyen AD, Morley JE, Li Y, Bateman RJ, Vellas B, Group MD. Cross-sectional and longitudinal associations between plasma neurodegenerative biomarkers and physical performance among community-dwelling older adults. J Gerontol A Biol Sci Med Sci. 2020;glaa284. https://doi.org/10.1093/gerona/glaa284.

  55. Jor’dan AJ, Manor B, Iloputaife I, Habtemariam DA, Bean JF, Sorond FA, Lipsitz LA. Diminished locomotor control is associated with reduced neurovascular coupling in older adults. J Gerontol A Biol Sci Med Sci. 2020;75:1516–22.

    Article  PubMed  Google Scholar 

  56. Lohman MC, Sonnega AJ, Resciniti NV, Leggett AN. Frailty phenotype and cause-specific mortality in the United States. J Gerontol A Biol Sci Med Sci. 2020;75:1935–42.

    Article  PubMed  PubMed Central  Google Scholar 

  57. Okely JA, Deary IJ. Associations between declining physical and cognitive functions in the Lothian Birth Cohort 1936. J Gerontol A Biol Sci Med Sci. 2020;75:1393–402.

    Article  PubMed  PubMed Central  Google Scholar 

  58. Siejka TP, Srikanth VK, Hubbard RE, Moran C, Beare R, Wood A, Phan T, Balogun S, Callisaya ML. White matter hyperintensities and the progression of frailty—The Tasmanian Study of Cognition and Gait. J Gerontol A Biol Sci Med Sci. 2020;75:1545–50.

    Article  PubMed  Google Scholar 

  59. Wanigatunga AA, Wang H, An Y, Simonsick EM, Tian Q, Davatzikos C, Urbanek JK, Zipunnikov V, Spira AP, Ferrucci L, Resnick SM, Schrack JA. Association between brain volumes and patterns of physical activity in community-dwelling older adults. J Gerontol A Biol Sci Med Sci. 2020. https://doi.org/10.1093/gerona/glaa294.

  60. Bair WN, Petr M, Alfaras I, Mitchell SJ, Bernier M, Ferrucci L, Studenski SA, De Cabo R. Of aging mice and men: gait speed decline is a translatable trait, with species-specific underlying properties. J Gerontol A Biol Sci Med Sci. 2019;74:1413–6.

    Article  PubMed  PubMed Central  Google Scholar 

  61. Finkel D, Sternang O, Jylhava J, Bai G, Pedersen NL. Functional Aging Index complements frailty in prediction of entry into care and mortality. J Gerontol A Biol Sci Med Sci. 2019;74:1980–6.

    Article  PubMed  PubMed Central  Google Scholar 

  62. LeBrasseur NK. Gait as an integrative measure and predictor of health across species. J Gerontol A Biol Sci Med Sci. 2019;74:1411–2.

    Article  PubMed  Google Scholar 

  63. Pahor M, Anton SD, Beavers DP, Cauley JA, Fielding RA, Kritchevsky SB, Leeuwenburgh C, Lewis KH, Liu CK, Lovato LC, Lu J, Manini TM, McDermott MM, Miller ME, Newman AB, Radziszewska B, Stowe CL, Tracy RP, Walkup MP, Wu SS, Ambrosius WT. Effect of losartan and fish oil on plasma IL-6 and mobility in older persons. The ENRGISE Pilot Randomized Clinical Trial. J Gerontol A Biol Sci Med Sci. 2019;74:1612–9.

    Article  CAS  PubMed  Google Scholar 

  64. Peel NM, Alapatt LJ, Jones LV, Hubbard RE. The association between gait speed and cognitive status in community-dwelling older people: a systematic review and meta-analysis. J Gerontol A Biol Sci Med Sci. 2019;74:943–8.

    Article  PubMed  Google Scholar 

  65. Pieruccini-Faria F, Montero-Odasso M. Obstacle negotiation, gait variability, and risk of falling: results from the “Gait and Brain Study.” J Gerontol A Biol Sci Med Sci. 2019;74:1422–8.

    Article  PubMed  Google Scholar 

  66. Annweiler C, Beauchet O, Bartha R, Wells JL, Borrie MJ, Hachinski V, Montero-Odasso M. Motor cortex and gait in mild cognitive impairment: a magnetic resonance spectroscopy and volumetric imaging study. Brain. 2013;136:859–71.

    Article  PubMed  Google Scholar 

  67. Allali G, van der Meulen M, Beauchet O, Rieger SW, Vuilleumier P, Assal F. The neural basis of age-related changes in motor imagery of gait: an fMRI study. J Gerontol A Biol Sci Med Sci. 2014;69:1389–98.

    Article  PubMed  Google Scholar 

  68. Tarantini S, Yabluchanksiy A, Fulop GA, Hertelendy P, Valcarcel-Ares MN, Kiss T, Bagwell JM, O’Connor D, Farkas E, Sorond F, Csiszar A, Ungvari Z. Pharmacologically induced impairment of neurovascular coupling responses alters gait coordination in mice. Geroscience. 2017;39:601–14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Balasubramanian P, DelFavero J, Ungvari A, Papp M, Tarantini A, Price N, de Cabo R, Tarantini S. Time-restricted feeding (TRF) for prevention of age-related vascular cognitive impairment and dementia. Ageing Res Rev. 2020;64:101189. https://doi.org/10.1016/j.arr.2020.101189.

  70. Tarantini S, Fulop GA, Kiss T, Farkas E, Zolei-Szenasi D, Galvan V, Toth P, Csiszar A, Ungvari Z, Yabluchanskiy A. Demonstration of impaired neurovascular coupling responses in TG2576 mouse model of Alzheimer's disease using functional laser speckle contrast imaging. Geroscience. 2017;39(4):465–73. https://doi.org/10.1007/s11357-017-9980-z.

  71. Nyul-Toth A, Tarantini S, Kiss T, Toth P, Galvan V, Tarantini A, Yabluchanskiy A, Csiszar A, Ungvari Z. Increases in hypertension-induced cerebral microhemorrhages exacerbate gait dysfunction in a mouse model of Alzheimer’s disease. GeroScience. 2020;42(6):1685–98.

  72. Bell RD, Zlokovic BV. Neurovascular mechanisms and blood-brain barrier disorder in Alzheimer’s disease. Acta Neuropathol. 2009;118:103–13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Faraco G, Park L, Zhou P, Luo W, Paul SM, Anrather J, Iadecola C. Hypertension enhances Abeta-induced neurovascular dysfunction, promotes beta-secretase activity, and leads to amyloidogenic processing of APP. J Cereb Blood Flow Metab. 2016;36:241–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Nicolakakis N, Hamel E. Neurovascular function in Alzheimer’s disease patients and experimental models. J Cereb Blood Flow Metab. 2011;31:1354–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Papadopoulos P, Tong XK, Imboden H, Hamel E. Losartan improves cerebrovascular function in a mouse model of Alzheimer’s disease with combined overproduction of amyloid-beta and transforming growth factor-beta1. J Cereb Blood Flow Metab. 2017;37(6):1959–70.

  76. Park L, Koizumi K, El Jamal S, Zhou P, Previti ML, Van Nostrand WE, Carlson G, Iadecola C. Age-dependent neurovascular dysfunction and damage in a mouse model of cerebral amyloid angiopathy. Stroke. 2014;45:1815–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Rancillac A, Geoffroy H, Rossier J. Impaired neurovascular coupling in the APPxPS1 mouse model of Alzheimer’s disease. Curr Alzheimer Res. 2012;9:1221–30.

    Article  CAS  PubMed  Google Scholar 

  78. Royea J, Zhang L, Tong XK, Hamel E. Angiotensin IV receptors mediate the cognitive and cerebrovascular benefits of losartan in a mouse model of Alzheimer’s disease. J Neurosci. 2017;37:5562–73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Shin HK, Jones PB, Garcia-Alloza M, Borrelli L, Greenberg SM, Bacskai BJ, Frosch MP, Hyman BT, Moskowitz MA, Ayata C. Age-dependent cerebrovascular dysfunction in a transgenic mouse model of cerebral amyloid angiopathy. Brain. 2007;130:2310–9.

    Article  PubMed  Google Scholar 

  80. Tong XK, Lecrux C, Rosa-Neto P, Hamel E. Age-dependent rescue by simvastatin of Alzheimer’s disease cerebrovascular and memory deficits. J Neurosci. 2012;32:4705–15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by grants from the American Heart Association, the Oklahoma Center for the Advancement of Science and Technology, the National Institute on Aging ((R01-AG055395, R01-AG047879; R01-AG038747; R01-AG072295), the National Institute of Neurological Disorders and Stroke (NINDS; R01-NS100782), the National Cancer Institute (NCI; 1R01CA255840), the Oklahoma Shared Clinical and Translational Resources (OSCTR) program funded by the National Institute of General Medical Sciences (U54GM104938, to AY), the Presbyterian Health Foundation and the NKFIH (Nemzeti Szivlabor). The authors acknowledge the support from the NIA-funded Geroscience Training Program in Oklahoma (T32AG052363), the Oklahoma Nathan Shock Center (P30AG050911), the Cellular and Molecular GeroScience CoBRE (1P20GM125528, sub#5337). The funding sources had no role in the study design; in the collection, analysis and interpretation of data; in the writing of the report; and in the decision to submit the article for publication.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Zoltan Ungvari or Stefano Tarantini.

Ethics declarations

Competing interests

Dr. Anna Csiszar serves as Associate Editor for The Journal of Gerontology, Series A: Biological Sciences and Medical Sciences and GeroScience. Dr. Andriy Yabluchanskiy serves as Guest Editor for The American Journal of Physiology-Heart and Circulatory Physiology. Dr. Zoltan Ungvari serves as Editor-in-Chief for GeroScience and as Consulting Editor for The American Journal of Physiology-Heart and Circulatory Physiology. The authors declare no competing financial interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nyul-Toth, A., DelFavero, J., Mukli, P. et al. Early manifestation of gait alterations in the Tg2576 mouse model of Alzheimer’s disease. GeroScience 43, 1947–1957 (2021). https://doi.org/10.1007/s11357-021-00401-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11357-021-00401-6

Keywords

Navigation