Skip to main content
Log in

Bioremediation of soil contaminated by hydrocarbons with the combination of three technologies: bioaugmentation, phytoremediation, and vermiremediation

  • Soils, Sec 5 • Soil and Landscape Ecology • Research Article
  • Published:
Journal of Soils and Sediments Aims and scope Submit manuscript

Abstract

Purpose

The aim of this study was to evaluate the removal of total petroleum hydrocarbons (TPH), alkanes and polycyclic aromatic hydrocarbons (PAH).

Materials and methods

Using phytoremediation (Panicum maximum) (G), vermiremediation (Pontoscolex corethrurus) (E), and bioaugmentation (encapsulated bacterial consortium) (B), individually and in combination, in contaminated soil by oil (PS) with sterilized (St) and non-sterilized treatments. Grass and earthworm biomass and the number of cocoons were determined after 112 days.

Results and discussion

The biomass of the P. maximum increased significantly from 1.7 to 2.6-folds overtime when it was cultivated in contaminated soil, either alone, in combination with earthworms, or with the bacterial consortium. After 112 days, the earthworm biomass significantly increased 2.0–2.6-folds with the highest increase in combination with the bacterial (PS+E+B), and its population increased from 4.9 to 8.5 times. P. corethrurus was not affected by the contamination so that deposition and hatch of cocoons (12–20) were observed. In sterilized treatments, no earthworms were detected after 112 days, which indicated that soil microorganisms are necessary for the earthworm’s survival and colonization. Most alkane and PAH removal occurred within 28 days; at 112 days, the alkane was 78.5–94.5% and the PAH 54.5–77.2% in non-sterilized soil. Panicum maximum treatment (SP+G) removed 74–99% of alkanes from C10 to C38 and also removed PAHs in 43–50% (2–3 rings), 46–90% (4 rings), 73% (5 rings), and 59% (6 rings) after 112 days. The combination of the grass with P. corethrurus and the bacterial increased the PAHs removal of 2 and 3 rings (54–62%), 4 rings (56–92%), 5 rings (80%), and 6 rings (70%) after 112 days. In non-sterilized treatments, the highest TPH removal was with earthworms plus bacterial (E+B) (86.4%), followed by E+G+B (82.7%) and B (82.6%).

Conclusions

The use of endogeic earthworms and plants species from the same contaminated field can be an efficient alternative for increasing hydrocarbon removal.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Adams GO, Fufeyin PT, Okoro SE, Ehinomen I (2015) Bioremediation, biostimulation, and bioaugmention: a review. Int J Environ Bioremediation Biodegrad 3:28–39

    CAS  Google Scholar 

  • Aguilera C (1980) Algunos datos sobre el chapopote en las fuentes documentales del siglo. Estud Cult Náhuatl Mex 4:335–343

    Google Scholar 

  • Ben Salem F, Ben Said O, Duran R, Monperrus M (2016) Validation of an adapted QuEChERS method for the simultaneous analysis of polycyclic aromatic hydrocarbons, polychlorinated biphenyls and organochlorine pesticides in sediment by gas chromatography–mass spectrometry. Bull Environ Contam Toxicol 96:678–684

    Article  CAS  Google Scholar 

  • Berns AE, Philipp H, Narres H-D et al (2008) Effect of gamma-sterilization and autoclaving on soil organic matter structure as studied by solid state NMR, UV and fluorescence spectroscopy. Eur J Soil Sci 59:540–550

    Article  CAS  Google Scholar 

  • Buch AC, Brown GG, Niva CC et al (2011) Life cycle of Pontoscolex corethrurus (Müller, 1857) in tropical artificial soil. Pedobiologia (Jena) 54:S19–S25

    Article  Google Scholar 

  • CCME (2008) Canadian soil quality guidelines carcinogenic and other polycyclic aromatic hydrocarbons (PAHs) - scientific supporting document. Canadian Council of Ministers of the Environment

  • Cébron A, Faure P, Lorgeoux C et al (2013) Experimental increase in availability of a PAH complex organic contamination from an aged contaminated soil: consequences on biodegradation. Environ Pollut 177:98–105

    Article  CAS  Google Scholar 

  • Chachina SB, Voronkova NA, Baklanova ON (2015) Biological remediation of the engine lubricant oil-contaminated soil with three kinds of earthworms, Eisenia fetida, Eisenia andrei Dendrobena veneta, and a mixture of microorganisms. In: Procedia Engineering. pp 113–123

  • Chaudhuri PS, Pal TK, Nath S, Dey SK (2012) Effects of five earthworm species on some physicochemical properties of soil. J Environ Biol 33:713–716

    CAS  Google Scholar 

  • Chen F, Tan M, Ma J et al (2016) Efficient remediation of PAH-metal co-contaminated soil using microbial-plant combination: a greenhouse study. J Hazard Mater 302:250–261

    Article  CAS  Google Scholar 

  • Cofield N, Banks MK, Schwab AP (2008) Liability of polycyclic aromatic hydrocarbons in the rhizosphere. Chemosphere 70:1644–1652

    Article  CAS  Google Scholar 

  • Couto MNPFS, Monteiro E, Vasconcelos MTSD (2010) Mesocosm trials of bioremediation of contaminated soil of a petroleum refinery: comparison of natural attenuation, biostimulation and bioaugmentation. Environ Sci Pollut Res 17:1339–1346

    Article  CAS  Google Scholar 

  • Couto MNPFS, Pinto D, Basto MCP, Vasconcelos TSD (2012) Role of natural attenuation, phytoremediation and hybrid technologies in the remediation of a refinery soil with old/recent petroleum hydrocarbons contamination. Environ Technol 33:2097–2104

    Article  CAS  Google Scholar 

  • Cuevas-Díaz M d C, Vázquez-Luna D, Martínez-Hernández S et al (2017) Sensitivity of the eEndogeic tropical earthworm Pontoscolex corethrurus to the presence of heavy crude oil. Bull Environ Contam Toxicol 99:154–160

    Article  CAS  Google Scholar 

  • Cvetkovic JS, Mitic VD, Stankov Jovanovic VP et al (2016) Optimization of the QuEChERS extraction procedure for the determination of polycyclic aromatic hydrocarbons in soil by gas chromatography-mass spectrometry. Anal Methods 8:1711–1720. https://doi.org/10.1039/C5AY03248B

    Article  CAS  Google Scholar 

  • Dzionek A, Wojcieszyńska D, Guzik U (2016) Natural carriers in bioremediation: a review. Electron J Biotechnol 23:28–36

    Article  CAS  Google Scholar 

  • Eilen AV, Gijsbert B, Terje F (1999) Guidelines for the risk assessment of contaminated sites. Norwegian Pollution Control Authority

  • Ekperusi OA, Aigbodion FI (2015a) Bioremediation of petroleum hydrocarbons from crude oil-contaminated soil with the earthworm: Hyperiodrilus africanus. 3 Biotech 5:957–965

    Article  CAS  Google Scholar 

  • Ekperusi OA, Aigbodion IF (2015b) Bioremediation of heavy metals and petroleum hydrocarbons in diesel contaminated soil with the earthworm: Eudrilus eugeniae. Springerplus 4:540. https://doi.org/10.1186/s40064-015-1328-5

    Article  CAS  Google Scholar 

  • Gan S, Lau EV, Ng HK (2009) Remediation of soils contaminated with polycyclic aromatic hydrocarbons (PAHs). J Hazard Mater 172:532–549

    Article  CAS  Google Scholar 

  • García-Sánchez M, Košnář Z, Mercl F et al (2018) A comparative study to evaluate natural attenuation, mycoaugmentation, phytoremediation, and microbial-assisted phytoremediation strategies for the bioremediation of an aged PAH-polluted soil. Ecotoxicol Environ Saf 147:165–174

    Article  CAS  Google Scholar 

  • García-Segura D, Castillo-Murrieta IM, Martínez-Rabelo F et al (2018) Macrofauna and mesofauna from soil contaminated by oil extraction. Geoderma 332:180–189

    Article  CAS  Google Scholar 

  • Gardi C, Angelini M, S. Barceló et al (2014) Atlas de suelos de América Latina y el Caribe. Comisión Europea. - Oficina de Publicaciones de la Unión Europea, L-2995, Luxembourg

  • Gkorezis P, Daghio M, Franzetti A et al (2016) The interaction between plants and bacteria in the remediation of petroleum hydrocarbons: an environmental perspective. Front Microbiol 7:1836

    Article  Google Scholar 

  • Guarino C, Spada V, Sciarrillo R (2017) Assessment of three approaches of bioremediation (natural attenuation, landfarming and bioagumentation – assistited landfarming) for a petroleum hydrocarbons contaminated soil. Chemosphere 170:10–16

    Article  CAS  Google Scholar 

  • Hernández-Castellanos B, Zavala-Cruz J, Martínez-Hernández S et al (2013) Earthworm populations in an aged hydrocarbon contaminated soil. Res J Environ Sci 7:27–37

    Article  Google Scholar 

  • INEGI (2017) Guía para la Interpretación de Cartografía Edafología. http://www.inegi.org.mx. Accessed 20 Jul 2010

  • Kelsey JW, Slizovskiy IB, Peters RD, Melnick AM (2010) Sterilization affects soil organic matter chemistry and bioaccumulation of spiked p,p′-DDE and anthracene by earthworms. Environ Pollut 158:2251–2257

    Article  CAS  Google Scholar 

  • Khorshid M, Souaya ER, Hamzawy AH, Mohammed MN (2015) QuEChERS method followed by solid phase extraction method for gas chromatographic-mass spectrometric determination of polycyclic aromatic hydrocarbons in fish. Int J Anal Chem 2015:352610

  • Kumar A (2005) Vermis & Vermitechnology. S.B. Nangia & A. P. H. Publishing Corporation, New Delhi

    Google Scholar 

  • Kuppusamy S, Thavamani P, Venkateswarlu K et al (2017) Remediation approaches for polycyclic aromatic hydrocarbons (PAHs) contaminated soils: technological constraints, emerging trends and future directions. Chemosphere 168:944–968

    Article  CAS  Google Scholar 

  • Larsen T, Pollierer MM, Holmstrup M et al (2016) Substantial nutritional contribution of bacterial amino acids to earthworms and enchytraeids: a case study from organic grasslands. Soil Biol Biochem 99:21–27

    Article  CAS  Google Scholar 

  • Lavelle P, Barois I, Cruz I et al (1987) Adaptive strategies of Pontoscolex corethrurus (Glossoscolecidae, Oligochaeta), a peregrine geophagous earthworm of the humid tropics. Biol Fertil Soils 5:188–194

    Article  Google Scholar 

  • Lavelle P, Spain A, Blouin M et al (2016) Ecosystem engineers in a self-organized soil: a review of concepts and future research questions. Soil Sci 181:91–109

    Article  CAS  Google Scholar 

  • Lee S-H, Lee W-S, Lee C-H, Kim J-G (2008) Degradation of phenanthrene and pyrene in rhizosphere of grasses and legumes. J Hazard Mater 153:892–898

    Article  CAS  Google Scholar 

  • Lopes LD, Pereira E Silva M d C, Andreote FD (2016) Bacterial abilities and adaptation toward the rhizosphere colonization. Front Microbiol 7:1341

    Article  Google Scholar 

  • Martinkosky L, Barkley J, Sabadell G et al (2016) Earthworms (Eisenia fetida) demonstrate potential for use in soil bioremediation by increasing the degradation rates of heavy crude oil hydrocarbons. Sci Total Environ 580:734–743

    Article  CAS  Google Scholar 

  • Moreno B, Cañizares R, Macci C et al (2015) Molecular tools to understand the bioremediation effect of plants and earthworms on contaminated marine sediments. J Hazard Mater 300:398–405

    Article  CAS  Google Scholar 

  • NOM-021-RECNAT (2000) Que establece las especificaciones de fertilidad, salinidad y clasificación de suelos. Estudios, muestreo y análisis. Secr. Medio Ambient. y Recur. Nat. 021

  • NOM-138-SEMARNAT/SSA1-2012 (2012) Límites máximos permisibles de hidrocarburos en suelos y lineamientos para el muestreo en la caracterización y especificaciones para la remediación. D Of la Fed 16

  • OPEC (2017) Online annual statistical bulletin. Organ Pet Export Ctries. ISSN 0475-0608

  • Ortegon GP, Arboleda FM, Candela L et al (2016) Vinasse application to sugar cane fields. Effect on the unsaturated zone and groundwater at Valle del Cauca (Colombia). Sci Total Environ 539:410–419

    Article  CAS  Google Scholar 

  • Pižl V, Nováková A (2003) Interactions between microfungi and Eisenia andrei (Oligochaeta) during cattle manure vermicomposting: the 7th International Symposium on Earthworm Ecology. Pedobiologia (Jena) 47:895–899

    Google Scholar 

  • Potashev K, Sharonova N, Breus I (2014) The use of cluster analysis for plant grouping by their tolerance to soil contamination with hydrocarbons at the germination stage. Sci Total Environ 485–486:71–82

    Article  CAS  Google Scholar 

  • Ramadass K, Palanisami T, Smith E et al (2016) Earthworm comet assay for assessing the risk of weathered petroleum hydrocarbon contaminated soils: need to look further than target contaminants. Arch Environ Contam Toxicol 71:561–571

    Article  CAS  Google Scholar 

  • Reinecke AJ, Van Wyk M, Reinecke SA, (2016) The Influence of Soil Characteristics on the Toxicity of Oil Refinery Waste for the Springtail Folsomia candida (Collembola). Environ Contam Tox 96:804–809

  • Rinaudi LV, Giordano W (2010) An integrated view of biofilm formation in rhizobia. FEMS Microbiol Lett 304:1–11

    Article  CAS  Google Scholar 

  • Rodriguez-Campos J, Dendooven L, Alvarez-Bernal D, Contreras-Ramos SM (2014) Potential of earthworms to accelerate removal of organic contaminants from soil: a review. Appl Soil Ecol 79:10–25

    Article  Google Scholar 

  • Rorat A, Wloka D, Grobelak A et al (2017) Vermiremediation of polycyclic aromatic hydrocarbons and heavy metals in sewage sludge composting process. J Environ Manag 187:347–353

    Article  CAS  Google Scholar 

  • Rubio-Clemente A, Torres-Palma RA, Peñuela GA (2014) Removal of polycyclic aromatic hydrocarbons in aqueous environment by chemical treatments: a review. Sci Total Environ 478:201–225

    Article  CAS  Google Scholar 

  • Sakkos JK, Kieffer DP, Mutlu BR et al (2016) Engineering of a silica encapsulation platform for hydrocarbon degradation using Pseudomonas sp. NCIB 9816-4. Biotechnol Bioeng 113:513–521

    Article  CAS  Google Scholar 

  • Šmídová K, Kim S, Hofman J (2017) Bioavailability of five hydrophobic organic compounds to earthworms from sterile and non-sterile artificial soils. Chemosphere 179:222–231

    Article  CAS  Google Scholar 

  • Sparks DL, Page AL, Helmke PA, Loeppert RH (1996) Chemical methods part 3. Soil Science Society of America, Madison

    Google Scholar 

  • Sundara-Rao WVB, Sinha MK (1963) Phosphate dissolving microorganisms in the soil and rhizosphere. Indian J Agric Sci 33:272–278

    Google Scholar 

  • Taheri S, Pelosi C, Dupont L (2018) Harmful or useful? A case study of the exotic peregrine earthworm morphospecies Pontoscolex corethrurus. Soil Biol Biochem 116:277–289

    Article  CAS  Google Scholar 

  • Tyagi M, da Fonseca MMR, de Carvalho CCCR (2011) Bioaugmentation and biostimulation strategies to improve the effectiveness of bioremediation processes. Biodegradation 22:231–241

    Article  CAS  Google Scholar 

  • Urban M, Lesueur C (2017) Comparing d-SPE sorbents of the QuEChERS extraction method and EMR-lipid for the determination of polycyclic aromatic hydrocarbons (PAH4) in food of animal and plant origin. Food Anal Methods 10:2111–2124

    Article  Google Scholar 

  • USEPA (1986) Test method for evaluating solid waste, SW-846, third. U.S. EPA, Washington, DC

    Google Scholar 

  • Vallejo AA, Fernández MS (2008) FRET between non-substrate probes detects lateral lipid domain formation during phospholipase A2 interfacial catalysis. Arch Biochem Biophys 480:1–10

    Article  CAS  Google Scholar 

  • Varjani SJ (2017) Microbial degradation of petroleum hydrocarbons. Bioresour Technol 223:277–286

    Article  CAS  Google Scholar 

  • Wolf DC, Skipper H (1996) Methods of soil analysis. Microbiological and biochemical properties. Part 2. Soil Science Society of America, Wisconsin, pp 1085–1122

    Google Scholar 

  • Wu M, Dick WA, Li W et al (2016) Bioaugmentation and biostimulation of hydrocarbon degradation and the microbial community in a petroleum-contaminated soil. Int Biodeterior Biodegrad 107:158–164

    Article  CAS  Google Scholar 

  • Wu M, Li W, Dick WA et al (2017) Bioremediation of hydrocarbon degradation in a petroleum-contaminated soil and microbial population and activity determination. Chemosphere 169:124–130. https://doi.org/10.1016/j.chemosphere.2016.11.059

    Article  CAS  Google Scholar 

  • Yan Y, Kuramae EE, de Hollander M et al (2017) Functional traits dominate the diversity-related selection of bacterial communities in the rhizosphere. ISME J 11:56–66

    Article  Google Scholar 

  • Yavari S, Malakahmad A, Sapari NB (2015) A review on phytoremediation of crude oil spills. Water Air Soil Pollut 226:279

    Article  CAS  Google Scholar 

  • Zirbes L, Thonart P, Haubruge E (2012) Microscale interactions between earthworms and microorganisms: a review. Biotechnol Agron Soc Environ 16:125–131

    Google Scholar 

Download references

Acknowledgments

Authors thank Teresa Mejía-Saulés and Miguel Jesús Cházaro-Basáñez for the grass taxonomic identification.

Funding

This research had financial support from “Consejo Nacional de Ciencia y Tecnología” (CONACYT) Mexico through project 247619. The author F. Martínez-Rabelo received a grant from CONACYT (611559) to complete this research.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jacobo Rodriguez-Campos or Silvia Maribel Contreras-Ramos.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Additional information

Responsible editor: Claudio Bini

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rodriguez-Campos, J., Perales-Garcia, A., Hernandez-Carballo, J. et al. Bioremediation of soil contaminated by hydrocarbons with the combination of three technologies: bioaugmentation, phytoremediation, and vermiremediation. J Soils Sediments 19, 1981–1994 (2019). https://doi.org/10.1007/s11368-018-2213-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11368-018-2213-y

Keywords

Navigation