Skip to main content
Log in

Honokiol enhances adipocyte differentiation by potentiating insulin signaling in 3T3-L1 preadipocytes

  • Original Paper
  • Published:
Journal of Natural Medicines Aims and scope Submit manuscript

Abstract

Adipose tissue plays an essential role in energy homeostasis as a metabolic and endocrine organ. Accordingly, adipocytes are emerging as a major drug target for obesity and obesity-mediated metabolic syndrome. Dysfunction of enlarged adipocytes in obesity is involved in obesity-mediated metabolic syndrome. Adipocytokines, such as adiponectin released from small adipocytes, are able to prevent these disorders. In this study, we found that honokiol, an ingredient of Magnolia officinalis used in traditional Chinese and Japanese medicines, enhanced adipocyte differentiation in 3T3-L1 preadipocytes. Oil Red O staining showed that treatment with honokiol in the presence of insulin dose-dependently increased lipid accumulation in 3T3-L1 preadipoyctes although its activity was weak compared with rosiglitazone. During adipocyte differentiation, the expression of peroxisome proliferator-activated receptor γ2 (PPARγ2) mRNA and PPARγ target genes such as adipocyte protein 2 (aP2), adiponectin, and GLUT4 was induced by treatment with 10 μM honokiol. However, honokiol failed to show direct binding to the PPARγ ligand-binding domain in vitro. In preadipocytes, treatment with honokiol in the presence of insulin increased the phosphorylation of extracellular signal-regulated kinase (ERK) 1/2 protein and Akt protein, early insulin signaling pathways related to adipocyte differentiation, compared with insulin-only treatment. Taken together, our results suggest that honokiol promotes adipocyte differentiation through increased expression of PPARγ2 mRNA and potentiation of insulin signaling pathways such as the Ras/ERK1/2 and phosphoinositide-3-kinase (PI3K)/Akt signaling pathways.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Spiegelman BM, Flier JS (1997) Adipogenesis and obesity: rounding out the big picture. Cell 87:212–218

    Google Scholar 

  2. McDougald OA, Mandrup S (2002) Adipogenesis: forces that tip the scales. Trends Endocrinol Metab 13:5–11

    Article  Google Scholar 

  3. Gregoire FM, Smas CM, Sul HS (1998) Understanding adipocyte differentiation. Phys Rev 78:783–809

    CAS  Google Scholar 

  4. Tontonoz P, Hu E, Spiegelman BM (1994) Stimulation of adipogenesis in fibroblasts by PPARγ2, a lipid-activated transcription factor. Cell 79:1147–1156

    Article  PubMed  CAS  Google Scholar 

  5. Spiegelman BM (1998) PPAR-gamma: adipogenic regulator and thiazolidinedione receptor. Diabetes 47:507–514

    Article  PubMed  CAS  Google Scholar 

  6. Staels B, Fruchart JC (2005) Therapeutic roles of peroxisome proliferator-activated receptor agonist. Diabetes 54:2460–2470

    Article  PubMed  CAS  Google Scholar 

  7. Han KL, Jung MH, Sohn JH, Hwang JK (2006) Gisenoside 20S-proptopanaxatriol (PPT) activates peroxisome proliferator-acivated receptor γ (PPARγ) in 3T3-L1 adipocytes. Biol Pharm Bull 29:110–113

    Article  PubMed  CAS  Google Scholar 

  8. Yang Y, Shang W, Zhou L, Jiang B, Jin H, Chen M (2007) Emodin with PPARγ ligand-binding activity promotes adipocyte differentiation and increases glucose uptake in 3T3-Ll cells. Biochem Biophys Res Commun 353:225–230

    Article  PubMed  CAS  Google Scholar 

  9. Waki H, Park KW, Mitro N, Pei M, Damoiseauz R, Wilpitz DC, Reue K, Saez E, Tontonoz P (2007) The small molecule harmine is an antidiabetic cell-type-specific regulator of PPARγ expression. Cell Metab 5:357–370

    Article  PubMed  CAS  Google Scholar 

  10. Saito T, Abe D, Sekiya K (2008) Sakuranetin induces adipogenesis of 3T3-L1 cells through enhanced expression of PPARγ. Biochem Biophys Res Commun 372:835–839

    Article  PubMed  CAS  Google Scholar 

  11. Tomiyama K, Nakata H, Sasa H, Arimura S, Nishio E, Watanabe Y (1995) Wortmannin, a specific phophatidylinositol 3-kinase inhibitor, inhibits adipocytic differentiation of 3T3-L1 cells. Biochem Biophys Res Commun 212:263–269

    Article  PubMed  CAS  Google Scholar 

  12. Kohn AD, Summers SA, Birnabaum MJ, Roth RA (1996) Expression of a constiutively active Akt Ser/Thr kinase in 3T3-L1 adipocytes stimulates glucose uptake and glucose transport 4 translocation. J Biol Chem 271:31372–31378

    Article  PubMed  CAS  Google Scholar 

  13. Font de Mora J, Porras A, Ahn N, Santos E (1997) Mitogen-activated protein kinase activation is not necessary for, but antagonizes, 3T3-L1 adipocytic differentiation. Mol Cell Biol 17:6068–6075

    PubMed  CAS  Google Scholar 

  14. Prusty D, Park BH, Davis KE, Garmer SR (2002) Activation of MEK/ERK signaling promotes adipogenesis by enhancing peroxisome proliferator-activated receptor γ (PPAR γ) and C/EBPα gene expression during the differentiation of 3T3-L1 preadipocytes. J Biol Chem 277:46226–46232

    Article  PubMed  CAS  Google Scholar 

  15. Xu J, Liao K (2004) Protein kinase B/AKT 1 plays a pivotal role in insulin-like growth factor-1 receptor signaling induced 3T3–L1 adipocyte differentiation. J Biol Chem 279:25914–25922

    Google Scholar 

  16. Zhang B, Berger J, Zhou G, Elbrecht A, Biswas S, White-Carrington S, Szalkowski D, Moller DE (1996) Insulin-and mitogen-activated protein kinase-mediated phosphorylation and activation of peroxisome proliferator-activated receptor γ. J Biol Chem 271:31771–31774

    Article  PubMed  CAS  Google Scholar 

  17. Bai X, Cerimele F, Ushio-Fukai M, Waqas M, Campbell PM, Govindarajan B, Channing JD, Traci B, David AF, Keqiang Y, Emma M, Woflgang D, Gerald S, Jack LA (2003) Honokiol, a small molecular weight natural product, inhibits angiogenesis in vitro and tumor growth in vivo. J Biol Chem 278:35501–35507

    Article  PubMed  CAS  Google Scholar 

  18. Yang JY, Della-Fera MA, Rayalam S, Baile CA (2008) Enhanced effects of xanthohumol plus honokiol on apoptosis in 3T3-L1 adipocytes. Obesity (Silver Spring) 16:1232–1238

    Article  CAS  Google Scholar 

  19. Uehara T, Chihara TM, Tokumitsu Y, Nomura Y (1991) Possible involvement of pertussis toxin-sensitive GTP-binding protein(s) in c-fos expression during differentiation of 3T3-L1 fibroblast to adipocytes. Biochim Biophys Acta 1088:41–46

    PubMed  CAS  Google Scholar 

  20. Uehara T, Hoshino S, Ui M, Tokumitsu Y, Nomura Y (1994) Possible involvement of phosphatidylinositol-specific phospholipase C related to pertussis toxin sensitive GTP-binding proteins during adipocyte differentiation of 3T3-L1 fibroblast: negative regulation of protein kinase C. Biochim Biophys Acta 1224:302–310

    Article  PubMed  CAS  Google Scholar 

  21. Rosen ED, Spiegelman BM (2000) Molecular regulation of adipogenesis. Annu Rev Cell Dev Biol 16:145–171

    Article  PubMed  CAS  Google Scholar 

  22. Tafuri SR (1996) Troglitazone enhance differentiation, basal glucose uptake, and Glut1 protein levels in 3T3-L1 adipocytes. Endocrinology 137:4706–4712

    Article  PubMed  CAS  Google Scholar 

  23. Bays H, Mandarino L, DeFronzo RA (2004) Role of the adipocyte, free fatty acids, and ectopic fat in pathogenesis of type 2 diabetes mellitus: peroxisomal proliferator-activated receptor agonists provide a rational therapeutic approach. J Clin Endocrinol Metab 89:463–478

    Article  PubMed  CAS  Google Scholar 

  24. Nakae J, Kitamura T, Kitamura Y, Biffs WH 3rd, Arden KC, Accili D (2003) The forkhead transcription factor Foxo1 regulates adipocyte differentiation. Dev Cell 4:119–129

    Article  PubMed  CAS  Google Scholar 

  25. Peng DD, Xu PZ, Chen ML, Hahn-Windgassen A, Skeen J, Jacobs J, Sundararajan D, Chen WS, Crawford SE, Coleman KG, Hay N (2003) Dwarfism, impaired skin development, skeletal muscle atrophy, delayed bone development, and impeded adipogenesis in mice lacking Akt1 and Akt2. Genes Dev 17:1352–1365

    Article  PubMed  CAS  Google Scholar 

  26. Dowell P, Otto TC, Adi S, Lane MD (2003) Convergence of peroxisome proliferator-activated receptor gamma and Foxo1 signaling pathways. J Biol Chem 278:45485–45491

    Article  PubMed  CAS  Google Scholar 

  27. Hu E, Kim JB, Sarraf P, Spiegelman BM (1996) Inhibition of adipogenesis through MAP kinase-mediated phosphorylation of PPARgamma. Science 274:2100–2103

    Article  PubMed  CAS  Google Scholar 

  28. Adams M, Reginato MJ, Shao D, Lazar MA, Chatterjee VK (1997) Transcriptional activation by peroxisome proliferator-activated receptor γ is inhibited by phosphorylation at a consensus mitogen-activated protein kinase site. J Biol Chem 272:5128–5132

    Article  PubMed  CAS  Google Scholar 

  29. Okuno A, Tamemoto H, Tobe K, Ueki K, Mori Y, Iwamoto K, Umesono K, Alkanuma Y, Fugiwara T, Horikoshi J, Yazuki Y, Kadowaki T (1998) Troglitazone increases the number of small adipocytes without the change of white adipose tissue mass in obese Zucker rats. J Clin Invest 101:1354–1361

    Article  PubMed  CAS  Google Scholar 

  30. Kotani H, Tanabe H, Mizukami H, Makishima M, Inoue M (2010) Identification of a naturally occurring rexinoid, honokiol, that activates the retinoid X receptor. J Nat Prod 27:1332–1336

    Article  Google Scholar 

  31. Jung CG, Horike H, Cha BY, Uhm KO, Yamauchi R, Yamaguchi T, Hosono T, Iida K, Woo JT, Michikawa M (2010) Honokiol increases ABCA1 expression level by activating retinoid X receptor beta. Biol Pharm Bull 33:1105–1111

    Article  PubMed  CAS  Google Scholar 

  32. Shulman AI, Mangelsdorf DJ (2005) Retinoid x receptor heterodimers in the metabolic syndrome. N Engl J Med 353:604–615

    Article  PubMed  CAS  Google Scholar 

  33. Seo JB, Moon HM, Kim WS, Lee YS, Jeong HW, Yoo EJ, Ham J, Kang H, Park MG, Steffensen KR, Stulnig TM, Gustafsson JA, Park SD, Kim JB (2004) Activated liver X receptors stimulate adipocyte differentiation through induction of peroxisome proliferator-activated receptor gamma expression. Mol Cell Biol 24:3430–3444

    Article  PubMed  CAS  Google Scholar 

  34. Rizzo G, Disante M, Mencarelli A, Renga B, Gioiello A, Pellicciari R, Fiorucci S (2006) The farnesoid X receptor promotes adipocyte differentiation and regulates adipose cell function in vivo. Mol Pharmacol 70:1164–1173

    Article  PubMed  CAS  Google Scholar 

  35. Ziouzenkova O, Plutzky J (2008) Retinoid metabolism and nuclear receptor responses: new insights into coordinated regulation of the PPAR–RXR complex. FEBS Lett 582:32–38

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Je-Tae Woo.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Choi, SS., Cha, BY., Iida, K. et al. Honokiol enhances adipocyte differentiation by potentiating insulin signaling in 3T3-L1 preadipocytes. J Nat Med 65, 424–430 (2011). https://doi.org/10.1007/s11418-011-0512-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11418-011-0512-3

Keywords

Navigation