Skip to main content

Advertisement

Log in

Camalexin induces apoptosis in T-leukemia Jurkat cells by increased concentration of reactive oxygen species and activation of caspase-8 and caspase-9

  • Original Paper
  • Published:
Journal of Natural Medicines Aims and scope Submit manuscript

Abstract

Camalexin, a major indole phytoalexin of Arabidopsis thaliana, accumulates in various cruciferous plants in response to environmental stress and reportedly displays antimicrobial activities against various plant pathogens. However, its cytotoxicity against eukaryotic cells and potential as a prospective drug for human diseases has been examined only in a limited context. Our data demonstrate the time- and concentration-dependent cytotoxicity of camalexin on human T-leukemia Jurkat cells in the micromolar range, and the lower potency of cytotoxic effects on human lymphoblasts and primary fibroblasts. Cytotoxicity of camalexin is enhanced by the glutathione-depleting agent buthionine sulfoximine and completely blocked by pan-caspase inhibitor Z-VAD-FMK. Treatment of Jurkat cells with camalexin resulted in activation of caspase-8, caspase-9, caspases-3/7, and apoptosis that was detected by the presence of a sub-G1 population of cells, externalization of phosphatidyl serine and decreased mitochondrial membrane potential. Staining with 2′,7′-dichlorodihydrofluorescein diacetate and dihydroethidium bromide displayed increased concentration of reactive oxygen species (ROS) early in camalexin-treated Jurkat cells, prior to the onset of apoptosis, while staining with MitoSOX dye identified mitochondria as a source of increased ROS. Our data suggest that this phytochemical, which has a wide range of predicted pharmacological activities, induces apoptosis in Jurkat leukemia cells through increased ROS followed by dissipation of mitochondrial membrane potential and execution of caspase-9- and caspase-8-initiated apoptosis. This is, to the best of our knowledge, the first report on antileukemic activity and mode of action of this unique indole phytoalexin.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Browne LM, Conn KL, Ayer WA, Tewari JP (1991) The camalexins: new phytoalexins produced in the leaves of Camelina sativa (Cruciferae). Tetrahedron 47:3909–3914

    Article  CAS  Google Scholar 

  2. Jimenez LD, Ayer WA, Tewari JP (1997) Phytoalexins produced in the leaves of Capsella bursa-pastoris (shepherd’s purse). Phytoprotection 78:99–103

    CAS  Google Scholar 

  3. Tsuji J, Jackson EP, Gage DA, Hammerschmidt R, Somerville SC (1992) Phytoalexin accumulation in Arabidopsis thaliana during the hypersensitive reaction to Pseudomonas syringae pv syringae. Plant Physiol 98:1304–1309

    Article  PubMed  CAS  Google Scholar 

  4. Glawischnig E (2007) Camalexin. Phytochemistry 68:401–406

    Article  PubMed  CAS  Google Scholar 

  5. Mezencev R, Galizzi M, Kutschy P, Docampo R (2009) Trypanosoma cruzi: antiproliferative effect of indole phytoalexins on intracellular amastigotes in vitro. Exp Parasitol 122:66–69

    Article  PubMed  CAS  Google Scholar 

  6. Moody CJ, Roffey JRA, Stephens MA, Stratford IJ (1997) Synthesis and cytotoxic activity of indolyl thiazoles. Anti-Cancer Drugs 8:489–499

    Article  PubMed  CAS  Google Scholar 

  7. Beier RC, Nigg HN (2001) Toxicology of naturally occurring chemicals in food. In: Hui YH, Smith RA, Spoerke DG Jr (eds) Foodborne disease handbook, plant toxicants, vol 3. Marcel Dekker Inc., New York, pp 37–186

    Google Scholar 

  8. Boue SM, Cleveland TE, Carter-Wientjes C, Shih BY, Bhatnagar D, McLachlan JM, Burow ME (2009) Phytoalexin-enriched functional foods. J Agric Food Chem 57:2614–2622

    Article  PubMed  CAS  Google Scholar 

  9. Ayer WA, Craw PA, Ma Y, Schiang M (1992) Synthesis of camalexin and related phytoalexins. Tetrahedron 48:2919–2924

    Article  CAS  Google Scholar 

  10. Schneider U, Schwenk HU, Bornkamm G (1977) Characterization of EBV-genome negative “null” and “T” cell lines derived from children with acute lymphoblastic leukemia and leukemic transformed non-Hodgkin lymphoma. Int J Cancer 19:621–626

    Article  PubMed  CAS  Google Scholar 

  11. Willis JH, Isaya G, Gakh O, Capaldi RA, Marusich MF (2008) Lateral-flow immunoassay for the frataxin protein in Friedreich’s ataxia patients and carriers. Mol Genet Metab 94:491–497

    Article  PubMed  CAS  Google Scholar 

  12. O’Brien J, Wilson I, Orton T, Pognan F (2000) Investigation of the Alamar Blue (resazurin) fluorescent dye for the assessment of mammalian cell cytotoxicity. Eur J Biochem 267:5421–5426

    Article  PubMed  Google Scholar 

  13. Hickey TE, Majam G, Guerry P (2005) Intracellular survival of Campylobacter jejuni in human monocytic cells and induction of apoptotic death by cytholethal distending toxin. Infect Immun 73:5194–5197

    Article  PubMed  CAS  Google Scholar 

  14. Ren YG, Wagner KW, Knee DA, Aza-Blanc P, Nasoff M, Deveraux QL (2004) Differential regulation of the TRAIL death receptors DR4 and DR5 by the signal recognition particle. Mol Biol Cell 15:5064–5074

    Article  PubMed  CAS  Google Scholar 

  15. Boesen-de Cock JG, de Vries E, Williams GT, Borst J (1998) The anti-cancer drug etoposide can induce caspase-8 processing and apoptosis in the absence of CD95 receptor–ligand interaction. Apoptosis 3:17–25

    Article  PubMed  CAS  Google Scholar 

  16. Reutelingsperger CP, van Heerde WL (1997) Annexin V, the regulator of phosphatidylserine-catalyzed inflammation and coagulation during apoptosis. Cell Mol Life Sci 53:527–532

    Article  PubMed  CAS  Google Scholar 

  17. Cossarizza A, Baccarani-Contri M, Kalashnikova G, Franceschi C (1993) A new method for the cytofluorimetric analysis of mitochondrial membrane potential using the J-aggregate forming lipophilic cation 5,5′, 6,6′-tetrachloro-1,1′, 3,3′-tetraethylbenzimidazol carbocyanine iodide (JC-1). Biochem Biophys Res Commun 197:40–45

    Article  PubMed  CAS  Google Scholar 

  18. Nunez R (2001) DNA measurement and cell cycle analysis by flow cytometry. Curr Issues Mol Biol 3:67–70

    PubMed  CAS  Google Scholar 

  19. Fox MH (1980) A model for the computer analysis of synchronous DNA distributions obtained by flow cytometry. Cytometry 1:71–77

    Article  PubMed  CAS  Google Scholar 

  20. Possel H, Noack H, Augustin W, Keilhoff G, Wolf G (1997) 2,7-Dihydrodichlorofluorescein diacetate as a fluorescent marker for peroxynitrite formation. FEBS Lett 416:175–178

    Article  PubMed  CAS  Google Scholar 

  21. Tarpey MM, Wink DA, Grisham MB (2004) Methods for detection of reactive metabolites of oxygen and nitrogen: in vitro and in vivo considerations. Am J Physiol Regul Integr Comp Physiol 286:R431–R444

    Article  PubMed  CAS  Google Scholar 

  22. Peshavariya HM, Dusting GJ, Selemidis S (2007) Analysis of dihydroethidium fluorescence for the detection of intracellular and extracellular superoxide produced by NADPH oxidase. Free Radic Res 41:699–712

    Article  PubMed  CAS  Google Scholar 

  23. Mukhopadhyay P, Rajesh M, Yoshihiro K, Haskó G, Pacher P (2007) Simple quantitative detection of mitochondrial superoxide production in live cells. Biochem Biophys Res Commun 358:203–208

    Article  PubMed  CAS  Google Scholar 

  24. Mazumdera J, Chakraborty R, Sena S, Vadrab S, Dec B, Ravi TK (2009) Synthesis and biological evaluation of some novel quinoxalinyl triazole derivatives. Der Pharma Chemica 2:188–198

    Google Scholar 

  25. Schwerk C, Schulze-Osthoff K (2003) Non-apoptotic functions of caspases in cellular proliferation and differentiation. Biochem Pharmacol 66:1453–1458

    Article  PubMed  CAS  Google Scholar 

  26. Glawischnig E, Hansen BG, Olsen CE, Halkier BA (2004) Camalexin is synthesized from indole-3-acetaldoxime, a key branching point between primary and secondary metabolism in Arabidopsis. Proc Natl Acad Sci USA 101:8245–8250

    Article  PubMed  CAS  Google Scholar 

  27. Pedras MSC, Jha M, Okeola OG (2005) Camalexin induces detoxification of the phytoalexin brassinin in the plant pathogen Leptosphaeria maculans. Phytochemistry 66:2609–2611

    Article  PubMed  CAS  Google Scholar 

  28. Thomma BP, Nelissen I, Eggermont K, Broekaert WF (1999) Deficiency in phytoalexin production causes enhanced susceptibility of Arabidopsis thaliana to the fungus Alternaria brassicicola. Plant J 19:163–171

    Article  PubMed  CAS  Google Scholar 

  29. Zhao J, Last RL (1996) Coordinate regulation of the tryptophan biosynthetic pathway and indolic phytoalexin accumulation in Arabidopsis. Plant Cell 8:2235–2244

    Article  PubMed  CAS  Google Scholar 

  30. Ekins S, Bugrim A, Brovold L, Kirillov E, Nikolsky Y, Rakhmatulin E, Sorokina S, Ryabov A, Serebryiskaya T, Melnikov A, Metz J, Nikolskaya T (2006) Algorithms for network analysis in systems-ADME/Tox using the MetaCore and MetaDrug platforms. Xenobiotica 36:877–901

    Article  PubMed  CAS  Google Scholar 

  31. Lemaire C, Andreau K, Souvannavong V, Adam A (1998) Inhibition of caspase activity induces a switch from apoptosis to necrosis. FEBS Lett 425:266–270

    Article  PubMed  CAS  Google Scholar 

  32. Shao Y, Gao Z, Marks PA, Jiang X (2004) Apoptotic and autophagic cell death induced by histone deacetylase inhibitors. Proc Natl Acad Sci USA 101:18030–18035

    Article  PubMed  CAS  Google Scholar 

  33. Hamilton TC, Winker MA, Louie KG, Batist G, Behrens BC, Tsuruo T, Grotzinger KR, McKoy WM, Young RC, Ozols RF (1985) Augmentation of adriamycin, melphalan and cisplatin cytotoxicity in drug-resistant and sensitive human ovarian carcinoma cell lines by buthionine sulfoximine mediated glutathione depletion. Biochem Pharmacol 34:2583–2586

    Article  PubMed  CAS  Google Scholar 

  34. Reber U, Wüllner U, Trepel M, Baumgart J, Seyfried J, Klockgether T, Dichgans J, Weller M (1998) Potentiation of treosulfan toxicity by the glutathione-depleting agent buthionine sulfoximine in human malignant glioma cells: the role of bcl-2. Biochem Pharmacol 55:349–359

    Article  PubMed  CAS  Google Scholar 

  35. Schneider E, Yamazaki H, Sinha BK, Cowan KH (1995) Buthionine sulphoximine-mediated sensitisation of etoposide-resistant human breast cancer MCF7 cells overexpressing the multidrug resistance-associated protein involves increased drug accumulation. Br J Cancer 71:738–743

    Article  PubMed  CAS  Google Scholar 

  36. Kito M, Akao Y, Ohishi N, Yagi K, Nozawa Y (2002) Arsenic trioxide-induced apoptosis and its enhancement by buthionine sulfoximine in hepatocellular carcinoma cell lines. Biochem Biophys Res Commun 291:861–867

    Article  PubMed  CAS  Google Scholar 

  37. Pu YS, Hour TC, Chen J, Huang CY, Guan JY, Lu SH (2002) Arsenic trioxide as a novel anticancer agent against human transitional carcinoma—characterizing its apoptotic pathway. Anticancer-Drugs 13:293–300

    Article  PubMed  CAS  Google Scholar 

  38. Wang TS, Kuo CF, Jan KY, Huang H (1996) Arsenite induces apoptosis in Chinese hamster ovary cells by generation of reactive oxygen species. J Cell Physiol 169:256–268

    Article  PubMed  CAS  Google Scholar 

  39. Chen YC, Lin-Shiau SY, Lin JK (1998) Involvement of reactive oxygen species and caspase 3 activation in arsenite-induced apoptosis. J Cell Physiol 177:324–333

    Article  PubMed  CAS  Google Scholar 

  40. Wang Y, Xu Y, Wang H, Xue P, Li X, Li B, Zheng Q, Sun G (2009) Arsenic induces mitochondria-dependent apoptosis by reactive oxygen species generation rather than glutathione depletion in Chang human hepatocytes. Arch Toxicol 10:899–908

    Article  Google Scholar 

  41. Han YH, Moon HJ, You BR, Kim SZ, Kim SH, Park WH (2009) The effect of MAPK inhibitors on arsenic trioxide-treated Calu-6 lung cells in relation to cell death, ROS and GSH levels. Anticancer Res 29:3837–3844

    PubMed  CAS  Google Scholar 

  42. Cohen MH, Hirschfeld S, Flamm Honig S, Ibrahim A, Johnson JR, O’Leary JJ, White RM, Williams GA, Pazdur R (2001) Drug approval summaries: arsenic trioxide, tamoxifen citrate, anastrazole, paclitaxel, bexarotene. Oncologist 6:4–11

    Article  PubMed  CAS  Google Scholar 

  43. Sellam A, Dongo A, Guillemette T, Hudhomme P, Simoneau P (2007) Transcriptional responses to exposure to the brassicaceous defence metabolites camalexin and allyl-isothiocyanate in the necrotrophic fungus Alternaria brassicicola. Mol Plant Pathol 8:195–208

    Article  PubMed  CAS  Google Scholar 

  44. Žaludová R, Žákovská A, Kašpárková J, Balcarová Z, Kleinwächter V, Vrána O (1997) DNA interactions of bifunctional dinuclear platinum(II) antitumor agents. Eur J Biochem 246:508–517

    Article  PubMed  Google Scholar 

  45. Manda G, Nechifor MT, Neagu TM (2009) Reactive oxygen species, cancer and anti-cancer therapies. Curr Chem Biol 3:22–46

    Article  Google Scholar 

  46. Hwang IT, Chung YM, Kim JJ, Chung JS, Kim BS, Kim HJ, Kim JS, Yoo YD (2007) Drug resistance to 5-FU linked to reactive oxygen species modulator 1. Biochem Biophys Res Commun 359:304–310

    Article  PubMed  CAS  Google Scholar 

  47. Benhar M, Engelberg D, Levitzki A (2002) ROS, stress-activated kinases and stress signaling in cancer. EMBO Rep 3:420–425

    Article  PubMed  CAS  Google Scholar 

  48. Hajduk PJ, Bures M, Praestgaard J, Fesik SW (2000) Privileged molecules for protein binding identified from NMR-based screening. J Med Chem 43:3443–3447

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by Deborah Nash Harris Endowment Fund; Ovarian Cycle Foundation, the Ovarian Cancer Institute, and the Slovak Research and Development Agency under the contract No. APVV-0514-06. The authors thank Dr. DeEtte Walker for reviewing the manuscript and Dr. Kenneth Scarberry for his help with the artwork.

Conflict of interest

The authors declare that no actual or potential conflict of interest exists in relation to this article.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roman Mezencev.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mezencev, R., Updegrove, T., Kutschy, P. et al. Camalexin induces apoptosis in T-leukemia Jurkat cells by increased concentration of reactive oxygen species and activation of caspase-8 and caspase-9. J Nat Med 65, 488–499 (2011). https://doi.org/10.1007/s11418-011-0526-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11418-011-0526-x

Keywords

Navigation