Skip to main content
Log in

Anisotropic Hardy-Lorentz spaces and their applications

  • Articles
  • Published:
Science China Mathematics Aims and scope Submit manuscript

Abstract

Let p ∈ (0, 1], q ∈ (0,∞] and A be a general expansive matrix on ℝn. We introduce the anisotropic Hardy-Lorentz space H p,q A (ℝn) associated with A via the non-tangential grand maximal function and then establish its various real-variable characterizations in terms of the atomic and the molecular decompositions, the radial and the non-tangential maximal functions, and the finite atomic decompositions. All these characterizations except the ∞-atomic characterization are new even for the classical isotropic Hardy-Lorentz spaces on ℝn. As applications, we first prove that H p,q A (ℝn) is an intermediate space between \(H_A^{{p_1},{q_1}}\left( {{\mathbb{R}^n}} \right)\) and \(H_A^{{p_2},{q_2}}\left( {{\mathbb{R}^n}} \right)\) with 0 < p 1 < p < p 2 < ∞ and q 1, q, q 2 ∈ (0,∞], and also between \(H_A^{p,{q_1}}\left( {{\mathbb{R}^n}} \right)\) and \(H_A^{p,{q_2}}\left( {{\mathbb{R}^n}} \right)\) with p ∈ (0,∞) and 0 < q 1 < q < q 2 ⩽ ∞ in the real method of interpolation. We then establish a criterion on the boundedness of sublinear operators from H p,q A (ℝn) into a quasi-Banach space; moreover, we obtain the boundedness of δ-type Calderón-Zygmund operators from H p A (ℝn) to the weak Lebesgue space L p,∞(ℝn) (or to H p,∞ A (ℝn) in the critical case, from H p A (ℝn) to L p,q(ℝn) (or to H p A (ℝn)) with \(\delta \in \left( {0,\frac{{In{\lambda _ - }}}{{Inb}}} \right]\;,\;p \in \left( {\frac{1}{{1 + \delta }},\;1} \right]\;and\;q \in \left( {0,\;\infty } \right]\) and q ∈ (0,∞], as well as the boundedness of some Calderón-Zygmund operators from H p,q A (ℝn) to L p,∞(ℝn), where \(b\;: \in \left| {\det \;A} \right|\), \({\lambda _ - }\;: = \;\min \left\{ {\left| \lambda \right|\;:\lambda \; \in \;\sigma \left( A \right)} \right\}\) and σ(A) denotes the set of all eigenvalues of A.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Abu-Shammala W, Torchinsky A. The Hardy-Lorentz spaces Hp,q(Rn). Studia Math, 2007, 182: 283–294

    Article  MathSciNet  MATH  Google Scholar 

  2. Almeida A, Caetano A M. Generalized Hardy spaces. Acta Math Sin Engl Ser, 2010, 26: 1673–1692

    Article  MathSciNet  MATH  Google Scholar 

  3. Álvarez J. Hp and weak Hp continuity of Calderón-Zygmund type operators. In: Fourier Analysis. Lecture Notes in Pure and Appl Math, vol. 157. New York: Dekker, 1994, 17–34

    Google Scholar 

  4. Álvarez J. Continuity properties for linear commutators of Calderón-Zygmund operators. Collect Math, 1998, 49: 17–31

    MathSciNet  MATH  Google Scholar 

  5. Álvarez J, Milman M. Hp continuity properties of Calderón-Zygmund-type operators. J Math Anal Appl, 1986, 118: 63–79

    Article  MathSciNet  MATH  Google Scholar 

  6. Aoki T. Locally bounded linear topological spaces. Proc Imp Acad Tokyo, 1942, 18: 588–594

    Article  MathSciNet  MATH  Google Scholar 

  7. Bennett C, Sharpley R. Interpolation of Operators. Orlando: Academic Press, 1988

    MATH  Google Scholar 

  8. Bergh J, Löfström J. Interpolation Spaces. An Introduction. Berlin-New York: Springer-Verlag, 1976

    Book  MATH  Google Scholar 

  9. Bownik M. Anisotropic Hardy Spaces and Wavelets. Memoirs of the American Mathematical Society, vol. 164, No. 781. Providence: Amer Math Soc, 2003

    MATH  Google Scholar 

  10. Bownik M. Boundedness of operators on Hardy spaces via atomic decompositions. Proc Amer Math Soc, 2005, 133: 3535–3542

    Article  MathSciNet  MATH  Google Scholar 

  11. Bownik M. Anisotropic Triebel-Lizorkin spaces with doubling measures. J Geom Anal, 2007, 17: 387–424

    Article  MathSciNet  MATH  Google Scholar 

  12. Bownik M, Ho K-P. Atomic and molecular decompositions of anisotropic Triebel-Lizorkin spaces. Trans Amer Math Soc, 2006, 358: 1469–1510

    Article  MathSciNet  MATH  Google Scholar 

  13. Bownik M, Li B, Yang D, et al. Weighted anisotropic Hardy spaces and their applications in boundedness of sublinear operators. Indiana Univ Math J, 2008, 57: 3065–3100

    Article  MathSciNet  MATH  Google Scholar 

  14. Calderón A-P. Intermediate spaces and interpolation: The complex method. Studia Math, 1964, 24: 113–190

    MathSciNet  MATH  Google Scholar 

  15. Calderón A-P. An atomic decomposition of distributions in parabolic Hp spaces. Adv Math, 1977, 25: 216–225

    Article  MATH  Google Scholar 

  16. Calderón A-P, Torchinsky A. Parabolic maximal functions associated with a distribution. Adv Math, 1975, 16: 1–64

    Article  MathSciNet  MATH  Google Scholar 

  17. Calderón A-P, Torchinsky A. Parabolic maximal functions associated with a distribution. II. Adv Math, 1977, 24: 101–171

    Article  MathSciNet  MATH  Google Scholar 

  18. Coifman R R, Lions P-L, Meyer Y, et al. Compensated compactness and Hardy spaces. J Math Pures Appl (9), 1993, 72: 247–286

    MathSciNet  MATH  Google Scholar 

  19. Coifman R R, Weiss G. Analyse Harmonique Noncommutative sur Certains Espaces Homogènes. In: Lecture Notes in Mathematics, vol. 242. Berlin: Springer, 1971

    Google Scholar 

  20. Coifman R R, Weiss G. Extensions of Hardy spaces and their use in analysis. Bull Amer Math Soc, 1977, 83: 569–645

    Article  MathSciNet  MATH  Google Scholar 

  21. Cwikel M. The dual of weak Lp. Ann Inst Fourier (Grenoble), 1975, 25: 81–126

    Article  MathSciNet  MATH  Google Scholar 

  22. Cwikel M, Fefferman C. Maximal seminorms on weak L1. Studia Math, 1980/1981, 69: 149–154

    MathSciNet  MATH  Google Scholar 

  23. Cwikel M, Fefferman C. The canonical seminorm on weak L1. Studia Math, 1984, 78: 275–278

    MathSciNet  MATH  Google Scholar 

  24. Ding Y, Lan S. Anisotropic weak Hardy spaces and interpolation theorems. Sci China Ser A, 2008, 51: 1690–1704

    Article  MathSciNet  MATH  Google Scholar 

  25. Ding Y, Lu S. Hardy spaces estimates for multilinear operators with homogeneous kernels. Nagoya Math J, 2003, 170: 117–133

    Article  MathSciNet  MATH  Google Scholar 

  26. Ding Y, Lu S, Shao S. Integral operators with variable kernels on weak Hardy spaces. J Math Anal Appl, 2006, 317: 127–135

    Article  MathSciNet  MATH  Google Scholar 

  27. Ding Y, Lu S, Xue Q. Parametrized Littlewood-Paley operators on Hardy and weak Hardy spaces. Math Nachr, 2007, 280: 351–363

    Article  MathSciNet  MATH  Google Scholar 

  28. Duoandikoetxea J. Fourier Analysis. In: Graduate Studies in Mathematics, vol. 29. Providence: Amer Math Soc, 2001, xviii+222pp

    Google Scholar 

  29. Fefferman C, Rivière N M, Sagher Y. Interpolation between Hp spaces: The real method. Trans Amer Math Soc, 1974, 191: 75–81

    MathSciNet  MATH  Google Scholar 

  30. Fefferman C, Stein E M. Hp spaces of several variables. Acta Math, 1972, 129: 137–193

    Article  MathSciNet  MATH  Google Scholar 

  31. Fefferman R, Soria F. The spaces weak H1. Studia Math, 1987, 85: 1–16

    MathSciNet  Google Scholar 

  32. Folland G B, Stein E M. Hardy Spaces on Homogeneous Groups. Princeton: Princeton University Press; Tokyo: University of Tokyo Press, 1982

    MATH  Google Scholar 

  33. Fu X, Lin H B, Yang D C, et al. Hardy spaces Hp over non-homogeneous metric measure spaces and their applications. Sci China Math, 2015, 58: 309–388

    Article  MathSciNet  MATH  Google Scholar 

  34. Grafakos L. Hardy space estimates for multilinear operators, II. Rev Mat Iberoam, 1992, 8: 69–92

    Article  MathSciNet  MATH  Google Scholar 

  35. Grafakos L. Classical Fourier Analysis, 2nd ed. New York: Springer, 2008

    MATH  Google Scholar 

  36. Grafakos L. Modern Fourier Analysis, 2nd ed. New York: Springer, 2009

    Book  MATH  Google Scholar 

  37. Grafakos L, Liu L, Yang D. Maximal function characterizations of Hardy spaces on RD-spaces and their applications. Sci China Ser A, 2008, 51: 2253–2284

    Article  MathSciNet  MATH  Google Scholar 

  38. Hunt R. On L(p, q) spaces. Enseign Math, 1966, 12: 249–276

    MATH  Google Scholar 

  39. Ioku N, Ishige K, Yanagida E. Sharp decay estimates in Lorentz spaces for nonnegative Schrödinger heat semigroups. J Math Pures Appl (9), 2015, 103: 900–923

    Article  MathSciNet  Google Scholar 

  40. Ky L D. New Hardy spaces of Musielak-Orlicz type and boundedness of sublinear operators. Integral Equations Operator Theory, 2014, 78: 115–150

    Article  MathSciNet  MATH  Google Scholar 

  41. Li B, Bownik M, Yang D. Littlewood-Paley characterization and duality of weighted anisotropic product Hardy spaces. J Funct Anal, 2014, 266: 2611–2661

    Article  MathSciNet  MATH  Google Scholar 

  42. Li B, Bownik M, Yang D, et al. Duality of weighted anisotropic Besov and Triebel-Lizorkin spaces. Positivity, 2012, 16: 213–244

    Article  MathSciNet  MATH  Google Scholar 

  43. Li B, Bownik M, Yang D, et al. A mean characterization of weighted anisotropic Besov and Triebel-Lizorkin spaces. Z Anal Anwend, 2014, 33: 125–147

    Article  MathSciNet  MATH  Google Scholar 

  44. Liang Y, Liu L, Yang D. An off-diagonal Marcinkiewicz interpolation theorem on Lorentz spaces. Acta Math Sin Engl Ser, 2011, 27: 1477–1488

    Article  MathSciNet  MATH  Google Scholar 

  45. Lin H, Yang D. Equivalent boundedness of Marcinkiewicz integrals on non-homogeneous metric measure spaces. Sci China Math, 2014, 57: 123–144

    Article  MathSciNet  MATH  Google Scholar 

  46. Lions J-L, Peetre J. Sur une classe d’espaces d’interpolation (in French). Inst Hautes études Sci Publ Math, 1964, 19: 5–68

    Article  MathSciNet  Google Scholar 

  47. Liu H. The weak Hp spaces on homogeneous groups. In: Harmonic Analysis. Lecture Notes in Math, vol. 1494. Berlin: Springer, 1991, 113–118

    Google Scholar 

  48. Liu J, Yang D, Yuan W. Littlewood-Paley characterizations of anisotropic Hardy-Lorentz spaces. ArXiv:1601.05242, 2016

    Google Scholar 

  49. Liu S, Zhao K. Various characterizations of product Hardy spaces associated to Schrödinger operators. Sci China Math, 2015, 58: 2549–2564

    Article  MathSciNet  MATH  Google Scholar 

  50. Lorentz G G. Some new functional spaces. Ann of Math (2), 1950, 51: 37–55

    Article  MathSciNet  MATH  Google Scholar 

  51. Lorentz G G. On the theory of spaces. Pacific J Math, 1951, 1: 411–429

    Article  MathSciNet  MATH  Google Scholar 

  52. Lu S. Four Lectures on Real Hp Spaces. River Edge: World Scientific Publishing, 1995, viii+217pp

    Book  Google Scholar 

  53. Meda S, Sjögren P, Vallarino M. On the H1-L1 boundedness of operators. Proc Amer Math Soc, 2008, 136: 2921–2931

    Article  MathSciNet  MATH  Google Scholar 

  54. Merker J, Rakotoson J-M. Very weak solutions of Poisson’s equation with singular data under Neumann boundary conditions. Calc Var Partial Differential Equations, 2015, 52: 705–726

    Article  MathSciNet  MATH  Google Scholar 

  55. Merucci C. Applications of interpolation with a function parameter to Lorentz, Sobolev and Besov spaces. In: Inter polation Spaces and Allied Topics in Analysis. Lecture Notes in Math, vol. 1070. Berlin: Springer, 1984, 183–201

    Chapter  Google Scholar 

  56. Muscalu C, Tao T, Thiele C. A counterexample to a multilinear endpoint question of Christ and Kiselev. Math Res Lett, 2003, 10: 237–246

    Article  MathSciNet  MATH  Google Scholar 

  57. Müller S. Hardy space methods for nonlinear partial differential equations: Equadiff 8. Tatra Mt Math Publ, 1994, 4: 159–168

    MathSciNet  Google Scholar 

  58. Nakai E, Sawano Y. Orlicz-Hardy spaces and their duals. Sci China Math, 2014, 57: 903–962

    Article  MathSciNet  MATH  Google Scholar 

  59. Oberlin R, Seeger A, Tao T, et al. A variation norm Carleson theorem. J Eur Math Soc, 2012, 14: 421–464

    Article  MathSciNet  MATH  Google Scholar 

  60. Parilov D. Two theorems on the Hardy-Lorentz classes H1,q (in Russian). J Math Sci, 2006, 139: 6447–6456

    Article  MathSciNet  Google Scholar 

  61. Peetre J. Nouvelles propriétés d’espaces d’interpolation. C R Acad Sci Paris, 1963, 256: 1424–1426

    MathSciNet  MATH  Google Scholar 

  62. Phuc N C. The Navier-Stokes equations in nonendpoint borderline Lorentz spaces. J Math Fluid Mech, 2015, 17: 741–760

    Article  MathSciNet  MATH  Google Scholar 

  63. Rolewicz S. On a certain class of linear metric spaces. Bull Acad Polon Sci Cl Trois, 1957, 5: 471–473

    MathSciNet  MATH  Google Scholar 

  64. Rudin W. Functional Analysis, 2nd ed. New York: McGraw-Hill Inc, 1991

    MATH  Google Scholar 

  65. Sadosky C. Interpolation of Operators and Singular Integrals. New York: Marcel Dekker, 1976

    Google Scholar 

  66. Schmeisser H-J, Triebel H. Topics in Fourier Analysis and Function Spaces. Chichester: John Wiley and Sons Ltd, 1987

    MATH  Google Scholar 

  67. Seeger A, Tao T. Sharp Lorentz space estimates for rough operators. Math Ann, 2001, 320: 381–415

    Article  MathSciNet  MATH  Google Scholar 

  68. Semmes S. A primer on Hardy spaces, and some remarks on a theorem of Evans and Müller. Comm Partial Differential Equations, 1994, 19: 277–319

    Article  MathSciNet  MATH  Google Scholar 

  69. Stein E M. Harmonic Analysis: Real-Variable Methods, Orthogonality, and Oscillatory Integrals. Princeton: Princeton University Press, 1993

    MATH  Google Scholar 

  70. Stein E M, Weiss G. Introduction to Fourier Analysis on Euclidean Spaces. Princeton: Princeton University Press, 1971

    MATH  Google Scholar 

  71. Strömberg J-O, Torchinsky A. Weighted Hardy Spaces. Berlin: Springer-Verlag, 1989

    Book  MATH  Google Scholar 

  72. Tan C, Li J. Littlewood-Paley theory on metric spaces with non doubling measures and its applications. Sci China Math, 2015, 58: 983–1004

    Article  MathSciNet  MATH  Google Scholar 

  73. Tao T, Wright J. Endpoint multiplier theorems of Marcinkiewicz type. Rev Mat Iberoam, 2001, 17: 521–558

    Article  MathSciNet  MATH  Google Scholar 

  74. Triebel H. Theory of Function Spaces. Basel: Birkhäuser Verlag, 1983

    Book  MATH  Google Scholar 

  75. Triebel H. Theory of Function Spaces. II. Basel: Birkhäuser Verlag, 1992

    Book  MATH  Google Scholar 

  76. Triebel H. Theory of Function Spaces. III. Basel: Birkhäuser Verlag, 2006

    MATH  Google Scholar 

  77. Wang H. Boundedness of several integral operators with bounded variable kernels on Hardy and weak Hardy spaces. Internat J Math, 2013, 24: 5–6

    Article  MathSciNet  Google Scholar 

  78. Yang D, Zhou Y. Boundedness of sublinear operators in Hardy spaces on RD-spaces via atoms. J Math Anal Appl, 2008, 339: 622–635

    Article  MathSciNet  MATH  Google Scholar 

  79. Yang D, Zhou Y. A boundedness criterion via atoms for linear operators in Hardy spaces. Constr Approx, 2009, 29: 207–218

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to DaChun Yang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, J., Yang, D. & Yuan, W. Anisotropic Hardy-Lorentz spaces and their applications. Sci. China Math. 59, 1669–1720 (2016). https://doi.org/10.1007/s11425-016-5157-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11425-016-5157-y

Keywords

MSC(2010)

Navigation