Skip to main content
Log in

Electron transfer and interfacial behavior of redox proteins

  • Reviews
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

This paper reviews the recent progress in the electron transfer and interfacial behavior of redox proteins. Significant achievements in the relevant fields are summarized including the direct electron transfer between proteins and electrodes, the thermodynamic and kinetic properties, catalytic activities and activity regulation of the redox proteins. It has been demonstrated that the electrochemical technique is an effective tool for protein studies, especially for probing into the electron transfer and interfacial behavior of redox proteins.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Hultquist DE, Sannes LJ, Juckett DA. Catalysis of methemoglobin reduction. Curr Top Cell Regul, 1984, 24: 287–300

    CAS  Google Scholar 

  2. Hamachi I, Fujita A, Kunitake T. Protein engineering using molecular assembly: functional conversion of cytochrome c via noncovalent interactions. J Am Chem Soc, 1997, 119: 9096–9102

    Article  CAS  Google Scholar 

  3. Hirst J. Elucidating the mechanisms of coupled electron transfer and catalytic reactions by protein film voltammetry. Biochim Biophys Acta, 2006, 1757: 225–239

    Article  CAS  Google Scholar 

  4. Armstrong FA, Wilson GS. Recent developments in Faradaic bioelectrochemistry. Electrochim Acta, 2000, 45: 2623–2645

    Article  CAS  Google Scholar 

  5. Macus RA, Sutin N. Electron transfers in chemistry and biology. Biochim Biophys Acta, 1985, 811: 265–322

    Google Scholar 

  6. Jeuken LJC. Conformational reorganisation in interfacial protein electron transfer. Biochim Biophys Acta, 2003, 1604: 67–76

    Article  CAS  Google Scholar 

  7. Closs GL, Miller JR. Intramolecular long-distance electron transfer in organic molecules. Science, 1988, 240: 440–447

    Article  CAS  Google Scholar 

  8. Canters GW, van de Kamp M. Protein-mediated electron transfer. Curr Opin Struc Biol, 1992, 2: 859–869

    Article  CAS  Google Scholar 

  9. Farid RS, Moser CC, Dutton PL. Electron transfer in proteins. Curr Opin Struc Biol, 1993, 3: 225–233

    Article  CAS  Google Scholar 

  10. Yeh P, Kuwana T. Reversible electrode reaction of cytochrome c. Chem Lett, 1977, 1145–1148

  11. Hirst J, Armstrong FA. Fast-scan cyclic voltammetry of protein films on pyrolytic graphite edge electrodes: characteristics of electron exchange. Anal Chem, 1998, 70: 5062–5071

    Article  CAS  Google Scholar 

  12. Armstrong FA, Hill HAO, Oliver BN. Surface selectivity in the direct electrochemistry of redox proteins. Contrasting behaviour at edge and basal planes of graphite. J Chem Soc Chem Commun, 1984, 106: 976–977

    Article  Google Scholar 

  13. Hagen WR. Direct electron transfer of redox proteins at the bare glassy carbon electrode. Eur J Biochem, 1989, 182: 523–530

    Article  CAS  Google Scholar 

  14. Armstrong FA, Cox PA, Hill HAO, Lowe VJ, Oliver BN. Metal ions and complexes as modulators of protein-interfacial electron transport at graphite electrodes. J Electroanal Chem, 1987, 217: 331–366

    Article  CAS  Google Scholar 

  15. Fan C, Li G, Zhu D. Recent progress in immobilized enzyme-based reagentless electrochemical biosensors. Curr Top Anal Chem, 2002, 3: 233–251

    CAS  Google Scholar 

  16. Armstrong FA, Heering HA, Hirst J. Reactions of complex metalloproteins studied by protein-film voltammetry. Chem Soc Rev, 1997, 26: 169–179

    Article  CAS  Google Scholar 

  17. Léger C, Elliott SJ, Hoke KR, Jeuken LJC, Jones AK, Armstrong FA. Enzyme electrokinetics: using protein film voltammetry to investigate redox enzymes and their mechanisms. Biochemistry, 2003, 42: 8653–8662

    Article  CAS  Google Scholar 

  18. Armstrong FA. Recent developments in dynamic electrochemical studies of adsorbed enzymes and their active sites. Curr Opin Chem Biol, 2005, 9: 110–117

    Article  CAS  Google Scholar 

  19. Armstrong FA, Butt JN, Sucheta A. Voltammetric studies of redoxactive centers in metalloproteins adsorbed on electrodes. Methods Enzymol, 1993, 227: 479–500

    Article  CAS  Google Scholar 

  20. Fan C, Zhuang Y, Li G, Zhu J, Zhu D. Direct electrochemistry and enhanced catalytic activity for hemoglobin in a sodium montmorillonite film. Electroanalysis, 2000, 33: 1156–1158

    Article  Google Scholar 

  21. Fan C, Gao Q, Zhu D, Wagner G, Li G. An unmediated hydrogen peroxide biosensor based on hemoglobin incorporated in a montmorillonite membrane. Analyst, 2001, 126: 1086–1089

    Article  CAS  Google Scholar 

  22. Fan C, Liu X, Pang J, Li G, Scheer H. Highly sensitive voltammetric biosensor for nitric oxide based on its high affinity with hemoglobin. Anal Chim Acta, 2004, 523: 225–228

    Article  CAS  Google Scholar 

  23. George P, Hanania G. A spectrophotometric study of ionizations in methaemoglobin. Biochem J, 1953, 55: 236–243

    CAS  Google Scholar 

  24. Lvov Y, Ariga K, Ichinose I, Kunitake T. Assembly of multicomponent protein films by means of electrostatic layer-by-layer adsorption. J Am Chem Soc, 1995, 117: 6117–6123

    Article  CAS  Google Scholar 

  25. Nassar AE, Willis WS, Rusling JF. Electron transfer from electrodes to myoglobin: facilitated in surfactant films and blocked by adsorbed biomacromolecules. Anal Chem, 1995, 67: 2386–2392

    Article  CAS  Google Scholar 

  26. Kauppinen JK, Moffatt DJ, Mantsch HH, Cameron DG. Fourier self-deconvolution: a method for resolving intrinsically overlapped brends. Appl Spectrosc, 1981, 35: 271–276

    Article  CAS  Google Scholar 

  27. Pang J, Fan C, Liu X, Chen T, Li G. A nitric oxide biosensor based on the multi-assembly of hemoglobin/montmorillonite/polyvinyl alcohol at a pyrolytic graphite electrode. Biosens Bioelectron, 2003, 19: 441–445

    Article  CAS  Google Scholar 

  28. Liu B, Hu R, Deng J. Characterization of immobilization of an enzyme in a modified Y zeolite, matrix and its application to an amperometric glucose biosensor. Anal Chem, 1997, 69: 2343–2348

    Article  CAS  Google Scholar 

  29. Chauhan S, Takeuchi K, Iyengar MRS, Chattoo BB. Chainia penicillin V acylase: strain characteristics, enzyme immobilization, and kinetic studies. Curr Microbiol, 1998, 37: 186–190

    Article  CAS  Google Scholar 

  30. Hashemi MM, Beni YA. Copper(I) chloride/kieselgubr: a versatile catalyst for oxidation of alkyl halides and alkyl tosylates to the carbonyl compounds. J Chem Res-S, 1999, 7: 434–435

    Article  Google Scholar 

  31. Wang H, Guan R, Fan C, Zhu D, Li G. A hydrogen peroxide biosensor based on the bioelectrocatalysis of hemoglobin incorporated in a kieselgubr film. Sens Actuat B, 2002, 84: 214–218

    Article  Google Scholar 

  32. Fan C, Wang H, Zhu D, Wagner G, Li G. Incorporation of horseradish peroxidase in a kieselguhr membrane and the application to a mediator-free hydrogen peroxide sensor. Anal Sci, 2001, 17: 273–276

    Article  CAS  Google Scholar 

  33. Shang L, Liu X, Fan C, Li G. A nitric oxide biosensor based on horseradish peroxidase/kieselgubr co-modified pyrolytic graphite electrode. Annali di Chimica, 2004, 94: 457–462

    Article  CAS  Google Scholar 

  34. Niemeyer CM, Adler M, Pignataro B, Lenhert S, Gao S, Chi L, Fuchs H, Blohm D. Self-assembly of DNA-streptavidin nanostructures and their use as reagents in immuno-PCR. Nucleic Acids Res, 1999, 27: 4553–4561

    Article  CAS  Google Scholar 

  35. Stellwagen E. Haem exposure as the determinate of oxidation- reduction potential of haem proteins. Nature, 1978, 275: 73–74

    Article  CAS  Google Scholar 

  36. Fan C, Chen X, Li G, Zhu J, Zhu D, Scheer H. Direct electrochemical characterization of the interaction between haemoglobin and nitric oxide. Phys Chem Chem Phys, 2000, 2: 4409–4413

    Article  CAS  Google Scholar 

  37. Fan C, Li G, Zhu J, Zhu D. A reagentless nitric oxide biosensor based on hemoglobin-DNA films. Anal Chim Acta, 2000, 423: 95–100

    Article  CAS  Google Scholar 

  38. Shang L, Sun Z, Wang X, Li G. Enhanced peroxidase activity of hemoglobin in a DNA membrane and its application to an unmediated hydrogen peroxide biosensor. Anal Sci, 2003, 19: 1537–1539

    Article  CAS  Google Scholar 

  39. Shang L, Liu X, Zhong J, Fan C, Suzuki I, Li G. Fabrication of ultrathin, protein-containing films by layer-by-layer assembly and electrochemical characterization of hemoglobin entrapped in the film. Chem Lett, 2003, 32: 296–297

    Article  CAS  Google Scholar 

  40. Lisdat F, Ge B, Krause B, Ehrlich A, Bienert H, Scheller F. Nucleic acid-promoted electron transfer to cytochrome c. Electroanalysis, 2001, 13: 1225–1230

    Article  CAS  Google Scholar 

  41. Chen X, Ruan C, Kong J, Deng J. Spectroelectrochemical investigation of direct electron transfer between resting horseradish peroxidase and its oxidation states promoted by DNA. Fresenius J Anal Chem, 2000, 367: 172–177

    Article  CAS  Google Scholar 

  42. Bray RC. The inorganic biochemistry of molybdoenzymes Q. Rev Biophys, 1988, 21: 299–329

    Article  CAS  Google Scholar 

  43. Hille R. The mononuclear molybdenum enzymes. Chem Rev, 1996, 96: 2757–2816

    Article  CAS  Google Scholar 

  44. Liu X, Peng W, Xiao H, Li G. DNA facilitating electron transfer reaction of xanthine oxidase. Electrochem Commun, 2005, 7: 562–566

    Article  CAS  Google Scholar 

  45. Fan C, Wang H, Sun S, Zhu D, Wagner G, Li G. Electron transfer reactivity and enzymatic activity of hemoglobin in a SP sephadex membrane. Anal Chem, 2001, 73: 2850–2854

    Article  CAS  Google Scholar 

  46. Liu X, Chen T, Liu L, Li G. Electrochemical characteristics of heme proteins in hydroxyethylcellulose film. Sens Actuat B, 2006, 113: 106–111

    Article  CAS  Google Scholar 

  47. Young LS, Martin WJ, Meyer RD, Weinstein RJ, Anderson ET. Gram-negative rod bacteremia: microbiologic, immunologic, and therapeutic considerations. Ann Intern Med, 1977, 864: 456–471

    Google Scholar 

  48. Ma X, Sun Z, Zheng X, Li G. Electrochemistry and electrocatalytic properties of heme proteins incorporated in lipopolysaccharide films. J Anal Chem, 2006, 61: 669–672

    Article  CAS  Google Scholar 

  49. Yang J, Hu N. Direct electron transfer for hemoglobin in biomembrane-like dimyristoyl phosphatidylcholine films on pyrolytic graphite electrodes. Bioelectrochem Bioenerg, 1999, 48: 117–127

    Article  CAS  Google Scholar 

  50. Fan C, Pang J, Shen P, Li G, Zhu D. Nitric oxide biosensors based on Hb/phosphatidylcholine films. Anal Sci, 2002, 18: 129–132

    Article  CAS  Google Scholar 

  51. Liu X, Zhang W, Huang Y, Li G. Enhanced electron-transfer reactivity of horseradish peroxidase in phosphatidylcholine films and its catalysis to nitric oxide. J Biotechnol, 2004, 108: 145–152

    Article  CAS  Google Scholar 

  52. Liu X, Zheng X, Xu Y, Li G. Multi-step reduction of nitric oxide by cytochrome c entrapped in phosphatidylcholine films. J Mol Catal B, 2005, 33: 9–13

    Article  CAS  Google Scholar 

  53. Liu X, Xiao H, Shang L, Wang X, Li G. Electrochemical studies of hemoglobin and myoglobin embedded in dipalmitoylphosphatidic acid films. Anal Lett, 2005, 38: 453–462

    CAS  Google Scholar 

  54. Liu X, Huang Y, Shang L, Wang X, Xiao H, Li G. Electron transfer reactivity and the catalytic activity of horseradish peroxidase incorporated in dipalmitoylphosphatidic acid films. Bioelectrochemistry, 2006, 68: 98–104

    Article  CAS  Google Scholar 

  55. Liu X, Shang L, Pang J, Li G. A reagentless nitric oxide biosensor based on hemoglobin/polyethyleneimine film. Biotechnol Appl Biochem, 2003, 38: 119–122

    Article  Google Scholar 

  56. Wen Z, Ye B, Zhou X. Direct electron transfer reaction of glucose oxidase at bare silver electrodes and its application in analysis. Electroanalysis, 1997, 9: 641–644

    Article  CAS  Google Scholar 

  57. Chi Q, Zhang J, Dong S, Wang E. Direct electrochemistry and surface characterization of glucose oxidase adsorbed on anodized carbon electrodes. Electrochim Acta, 1994, 39: 2431–2438

    Article  CAS  Google Scholar 

  58. Zhang W, Huang Y, Dai H, Wang X, Fan C, Li G. Tuning the redox and enzymatic activity of glucose oxidase in layered organic films and its application in glucose biosensors. Anal Biochem, 2004, 329: 85–90

    Article  CAS  Google Scholar 

  59. Xu Y, Peng W, Liu X, Li G. A new film for the fabrication of an unmediated H2O2 biosensor. Biosens Bioelectron, 2004, 20: 533–537

    Article  CAS  Google Scholar 

  60. Zhou H, Yang R, Xu Y, Han K, Li G. Direct electrochemistry and catalytic activity of hemoglobin and myoglobin entrapped in PEG film. Anal Lett, 2005, 38: 2103–2115

    Article  CAS  Google Scholar 

  61. Van Loosdrecht MCM, Pot MA, Heijnen JJ. Importance of bacterial storage polymers in bioprocesses. Water Sci Technol, 1997, 35: 41–47

    Google Scholar 

  62. Reddy CSK, Ghai R, Rashmi, Kalia VC. Polyhydroxyalkanoates: an overview. Bioresour Technol, 2003, 87: 137–146

    Article  CAS  Google Scholar 

  63. Ma X, Liu X, Xiao H, Li G. Direct electrochemistry and electrocatalysis of hemoglobin in poly-3-hydroxybutyrate membrane. Biosens Bioelectron, 2005, 20: 1836–1842

    Article  CAS  Google Scholar 

  64. Chen G, Ma X, Zhang X, Huang J, Li G. An electrochemical study of myoglobin entrapped in three kinds of films. Sensor Lett, 2007, 5: 463–466

    Article  CAS  Google Scholar 

  65. Kamiyama T, Sadahide Y, Nogusa Y, Gekko K. Polyol-induced molten globule of cytochromec: an evidence for stabilization by hydrophobic interaction. Biochim Biophys Acta, 1999, 1434: 44–57

    CAS  Google Scholar 

  66. Fan C, Wagner G, Li G. Effect of dimethyl sulfoxide on the electron transfer reactivity of hemoglobin. Bioelectrochemistry, 2001, 54: 49–51

    Article  CAS  Google Scholar 

  67. Fan C, Lu J, Zhang W, Suzuki I, Li G. Enhanced electron-transfer reactivity of cytochrome b5 by dimethyl sulfoxide and N, N′- dimethylformamide. Anal Sci, 2002, 18: 1031–1033

    Article  CAS  Google Scholar 

  68. Rusling JF, Forster RJ. Electrochemical catalysis with redox polymer and polyion-protein films. J Colloid Interface Sci, 2003, 262: 1–15

    Article  CAS  Google Scholar 

  69. Moller JV, Le Maire M. Detergent binding as a measure of hydrophobic surface area of integral membrane proteins. J Biol Chem, 1993, 268: 18659–18672

    CAS  Google Scholar 

  70. Liu X, Xu Y, Ma X, Li G. A third-generation hydrogen peroxide biosensor fabricated with hemoglobin and triton X-100. Sens Actuat B, 2005, 106: 284–288

    Article  CAS  Google Scholar 

  71. Ma X, Chen T, Liu L, Li G. Electrochemical studies on polysorbate 20 entrapped hemoglobin and its application to hydrogen peroxide biosensor. Biotechnol Appl Biochem, 2005, 41: 279–282

    Article  CAS  Google Scholar 

  72. Liu X, Shang L, Sun Z, Li G. Direct electrochemistry of hemoglobin in dimethyldioctadecyl ammonium bromide film and its electrocatalysis to nitric oxide. J Biochem Biophys Methods, 2005, 62: 143–151

    Article  CAS  Google Scholar 

  73. Zhou H, Yang R, Shang L, Zhu Z, Li G. Electron transfer reactivity and the catalytic activity of hemoglobin incorporated in dimethylaminoethyl methacrylate film. J Braz Chem Soc, 2005, 16: 1195–1199

    Article  CAS  Google Scholar 

  74. Hernandez-Santos D, Gonzalez-Garcia MB, Garcia AC. Metalnanoparticles based electroanalysis. Electroanalysis, 2002, 14: 1225–1235

    Article  CAS  Google Scholar 

  75. Katz E, Willner I, Wang J. Electroanalytical and bioelectroanalytical systems based on metal and semiconductor nanoparticles. Electroanalysis, 2004, 16: 19–44

    Article  CAS  Google Scholar 

  76. Gan X, Liu T, Zhu X, Li G. An electrochemical biosensor for nitric oxide based on silver nanoparticles and hemoglobin. Anal Sci, 2004, 20: 1271–1275

    Article  CAS  Google Scholar 

  77. Gan X, Liu T, Zhong J, Liu X, Li G. Effect of silver nanoparticles on the electron transfer reactivity and the catalytic activity of myoglobin. ChemBioChem, 2004, 5: 1686–1691

    Article  CAS  Google Scholar 

  78. Liu T, Zhong J, Gan X, Fan C, Li G, Matsuda N. Wiring electrons of cytochrome c with silver nanoparticles in layered films. ChemPhysChem, 2003, 4: 1364–1366

    Article  CAS  Google Scholar 

  79. Dutton PL, Wilson DF, Lee CP. Oxidation-reduction potentials of cytochromes in mitochondria. Biochemistry, 1970, 9: 5077–5082

    Article  CAS  Google Scholar 

  80. Xiao Y, Patolsky F, Katz E, Hainfeld JF, Willner I. “Plugging into enzymes”: nanowiring of redox enzymes by a gold nanoparticle. Science, 2003, 299: 1877–1881

    Article  CAS  Google Scholar 

  81. Zhao J, Zhu X, Li T, Li G. Self-assembled multilayer of gold nanoparticles for amplified electrochemical detection of cytochrome c. Analyst, 2008, 133: 1242–1245

    Article  CAS  Google Scholar 

  82. Huang Y, Zhang W, Xiao H, Li G. An electrochemical investigation of glucose oxidase at a CdS nanoparticles modified electrode. Biosens Bioelectron, 2005, 21: 817–821

    Article  CAS  Google Scholar 

  83. Zhou H, Gan X, Liu T, Yang Q, Li G. Effect of nano cadmium sulfide on the electron transfer reactivity and peroxidase activity of hemoglobin. J Biochem Biophys Methods, 2005, 64: 38–45

    Article  CAS  Google Scholar 

  84. Zhou H, Gan X, Liu T, Yang Q, Li G. Electrochemical study of photovoltaic effect of nano titanium dioxide on hemoglobin. Bioelectrochemistry, 2006, 69: 34–40

    Article  CAS  Google Scholar 

  85. Zhou H, Xu Y, Chen T, Suzuki I, Li G. Electrochemistry of xanthine oxidase and its interaction with nitric oxide. Anal Sci, 2006, 22: 337–340

    Article  CAS  Google Scholar 

  86. Zhu X, Yuri I, Gan X, Suzuki I, Li G. Electrochemical study of the effect of nano-zinc oxide on microperoxidase and its application to more sensitive hydrogen peroxide biosensor preparation. Biosens Bioelectron, 2007, 22: 1600–1604

    Article  CAS  Google Scholar 

  87. Liu XF, Theil EC. Ferritins: dynamic management of biological iron and oxygen chemistry. Acc Chem Res, 2005, 38: 167–175

    Article  CAS  Google Scholar 

  88. Lindsay S, Brosnahan D, Watt GD. Hydrogen peroxide formation during iron deposition in horse spleen ferritin using O–2 as an oxidant. Biochemistry, 2001, 40: 3340–3347

    Article  CAS  Google Scholar 

  89. Chen G, Zhu X, Meng F, Yu Z, Li G. Apoferritin as a bionanomaterial to facilitate the electron transfer reactivity of hemoglobin and the catalytic activity towards hydrogen peroxide. Bioelectrochemistry, 2008, 72: 77–80

    Article  CAS  Google Scholar 

  90. Bard AJ, Faulkner LR. Electrochemical Methods: Fundamentals and Applications. 2nd ed. John Wiley&Sons Inc: New York, 2003

    Google Scholar 

  91. Laviron E. Adsorption, autoinhibition and autocatalysis in polarography and in linear potential sweep voltammetry. J Electroanal Chem, 1974, 52: 355–393

    Article  CAS  Google Scholar 

  92. Bard AJ. Electroanalytical Chemistry. Marcel Dekker: New York, 1984

    Google Scholar 

  93. Laviron E. General expression of the linear potential sweep voltammogram in the case of diffusionless electrochemical systems. J Electroanal Chem, 1979, 101: 19–28

    Article  CAS  Google Scholar 

  94. Rusling JF, Nassar AEF. Enhanced electron transfer for myoglobin in surfactant films on electrodes. J Am Chem Soc, 1993, 115: 11891–11897

    Article  CAS  Google Scholar 

  95. Meites L. Polarographic Techniques.2nd ed. Wiley: New York, 1965

    Google Scholar 

  96. Bond AM. Modern Polarographic Methods In Analytical Chemistry. Marcel Dekker: New York, 1980

    Google Scholar 

  97. Hamachi I, Fujita A, Kunitake T. Enhanced N-demethylase activity of cytochrome c bound to a phosphate-bearing synthetic bilayer membrane. J Am Chem Soc, 1994, 116: 8811–8812

    Article  CAS  Google Scholar 

  98. Halliwella B, Clementb MV, Longvsdfa LH. Hydrogen peroxide in the human body. FEBS Lett, 2000, 486: 10–13

    Article  Google Scholar 

  99. Mala Ekanayake EMI, Preethichandra DMG, Kaneto K. Bifunctional amperometric biosensor for low concentration hydrogen peroxide measurements using polypyrrole immobilizing matrix. Sens Actuat B, 2008, 132: 166–171

    Article  CAS  Google Scholar 

  100. Clarc LC. The hydrogen peroxide sensing platinum anode as an analytical enzyme electrode. Method Enzymol, 1979, 56: 448–479

    Article  Google Scholar 

  101. Wang J, Naser N, Angnes L, Hui W, Chen L. Metal-dispersed carbon paste electrodes. Anal Chem, 1992, 64: 1285–1288

    Article  CAS  Google Scholar 

  102. Gorton L, Jonsson-Pettersson G, Csoregi E, Johansson K, Dominguez E, Marko-Varga G. Amperometric biosensors based on an apparent direct electron transfer between electrodes and immobilized peroxidase. Analyst, 1992, 117: 1235–1241

    Article  CAS  Google Scholar 

  103. Ferri T, Poscia A, Santucci R. Direct electrochemistry of membrane-entrapped horseradish peroxidase. Part I. A voltam-metric and spectroscopic study. Bioelectrochem Bioenerg, 1998, 44: 177–181

    Article  CAS  Google Scholar 

  104. Stamler J S. Redox signaling nitrosylation and related target interactions of nitric oxide. Cell, 1994, 78: 931–936

    Article  CAS  Google Scholar 

  105. Stamler J S, Singel D J, Loscalzo J. Biochemistry of nitric oxide and its redoxactivated forms. Science, 1992, 258: 1898–1902

    Article  CAS  Google Scholar 

  106. Nathan C. Nitric oxide as a secretory product of mammalian cells. FASEB J, 1992, 6: 3051–3064

    CAS  Google Scholar 

  107. Yao SJ, Xu W, Wolfson SK. A micro carbon electrode for nitric oxide monitoring. ASAIO J, 1995, 41: 404–409

    Article  Google Scholar 

  108. Younathan JN, Wood KS, Meyer TJ. Electrocatalytic reduction of nitrite and nitrosyl by iron(III) protoporphyrin IX dimethyl ester immobilized in an electropolymerized film. Inorg Chem, 1992, 31: 3280–3285

    Article  CAS  Google Scholar 

  109. Eich RF, Li T, Lemon DD, Doherty DH, Curry SR, Aitken JF, Mathews AJ, Johnson KA, Smith RD, Phillips GN, Olson JS. Mechanism of NO-induced oxidation of myoglobin and hemoglobin. Biochemistry, 1996, 35: 6976–6983

    Article  CAS  Google Scholar 

  110. Rusling JF. Enzyme bioelectrochemistry in cast biomembrane-like films. Acc Chem Res, 1998, 31: 363–369

    Article  CAS  Google Scholar 

  111. Nassar AEF, Bobbitt JM, Stuart JD, Rusling JF. Catalytic reduction of organohalide pollutants by myoglobin in a biomembrane like surfactant film. J Am Chem Soc, 1995, 117: 10986–10993

    Article  CAS  Google Scholar 

  112. Wang J, Liang Z, Wang L, Fan C, Li G. Electron transfer reactivity and catalytical activity of structurally rigidized hemoglobin. Sens Actuat B, 2007, 125: 17–21

    Article  CAS  Google Scholar 

  113. Saini S, Hall CF, Downs ME, Turner AP. Organic phase enzyme electrodes. Anal Chim Acta, 1991, 249: 1–15

    Article  CAS  Google Scholar 

  114. Bogdanovskaya VA, Kuznetsova LN, Tarasevich MR. Bioelectrocatalytic and enzymic activity of laccase in water-ethanol solutions. Russ J Electrochem, 2002, 38: 1074–1081

    Article  CAS  Google Scholar 

  115. Zhang W, Zhou H, Li G, Scheer H. An electrochemical study of hemoglobin in water-glycerol solutions. Biophys Chem, 2004, 111: 229–233

    Article  CAS  Google Scholar 

  116. Tambwekar SV, Subrahmanyam M. Photocatalytic generation of hydrogen from hydrogen sulfide: an energy bargain. Int J Hydrogen Energy, 1997, 22: 959–965

    Article  CAS  Google Scholar 

  117. Li QW, Luo GA, Feng J. Direct electron transfer for heme proteins assembled on nanocrystalline TiO2 film. Electroanalysis, 2001, 13: 359–363

    Article  CAS  Google Scholar 

  118. Zhou H, Gan X, Wang J, Zhu X, Li G. Hemoglobin-based hydrogen peroxide biosensor tuned by the photovoltaic effect of nano titanium dioxide. Anal Chem, 2005, 77: 6102–6104

    Article  CAS  Google Scholar 

  119. Durán N, Rosa MA, D’Annibale A, Gianfreda L. Application of laccases and tyrosinases (phenoloxidases) immobilized on different supports: a review. Enzym Microbiol Technol, 2002, 31: 907–931

    Article  Google Scholar 

  120. Zhou H, Liu L, Yin K, Liu S, Li G. Electrochemical investigation on the catalytic ability of tyrosinase with the effect of nano titanium dioxide. Electrochem Commun, 2006, 8: 1168–1172

    Article  CAS  Google Scholar 

  121. Lu WD, Atkins WM. A novel antioxidant role for ligandin behavior of glutathione S-transferases: Attenuation of the photodynamic effects of hypericin. Biochemistry, 2004, 43: 12761–12769

    Article  CAS  Google Scholar 

  122. Zhao J, Meng W, Miao P, Yu Z, Li G. Photodynamic effect of hypericin on the conformation and catalytic activity of hemoglobin. Int J Mol Sci, 2008, 9: 145–153

    Article  CAS  Google Scholar 

  123. Lin J, Vitello LB, Erman JE. Imidazole binding to horse metmyoglobin: dependence upon pH and ionic strength. Arch Biochem Biophys, 1998, 352: 214–228

    Article  CAS  Google Scholar 

  124. Cohen DJ, King BC, Hawkridge FM. Spectroelectrochemical and electrochemical determination of ligand binding and electron transfer properties of myoglobin, cyanomyoglobin, and imidazolemyoglobin. J Electroanal Chem, 1998, 447: 53–62

    Article  CAS  Google Scholar 

  125. Zhang W, Fan C, Sun Y, Li G. An electrochemical investigation of ligand-binding abilities of film-entrapped myoglobin. Biochim Biophys Acta, 2003, 1623: 29–32

    CAS  Google Scholar 

  126. Macdonald RL, Zhang J, Weir B, Marton LS, Wollman R. Adenosine triphosphate causes vasospasm of the rat femoral artery. Neurosurgery, 1998, 42: 825–863

    Article  CAS  Google Scholar 

  127. Peng W, Liu X, Zhang W, Li G. An electrochemical investigation of effect of ATP on hemoglobin. Biophys Chem, 2003, 106: 267–273

    Article  CAS  Google Scholar 

  128. Perutz MF, Shih DTB, Williamson D. The chloride effect in human haemoglobin, a new kind of allosteric mechanism. J Mol Biol, 1994, 239: 555–560

    Article  CAS  Google Scholar 

  129. Fronticelli C, Sanna MT, Perez-Alvarado GC, Karavitis M, Lu AL, Brinigar WS. Allosteric modulation by tertiary structure in mammalian hemoglobins. J Biol Chem, 1995, 270: 30588–30592

    Article  CAS  Google Scholar 

  130. Eddowes MJ, Hill HAO, Uosaki K. The electrochemistry of cyto chrome c investigation of the mechanism of the 4,4′-bipyridyl surface modified gold electrode. Bioelectrochem Bioenerg, 1980, 77: 527–537

    Article  CAS  Google Scholar 

  131. Sun Y, Liu X, Fan C, Zhang W, Li G. Electrochemical investigation of the chloride effect on hemoglobin. Bioelectrochemistry, 2004, 64: 23–27

    Article  CAS  Google Scholar 

  132. Yang R, Gao G, Liu T, Liu S, Li G. Enhanced ability of hemoglobin to carry oxygen by salidroside. Electrochem Commun, 2007, 9: 94–96

    Article  CAS  Google Scholar 

  133. Gallet PF, Petit JM, Maftah A, Zachowski A, Julien R. Asymmetrical distribution of cardiolipin in yeast inner mitochondrial membrane triggered by carbon catabolite repression. Biochem J, 1997, 324: 627–634

    CAS  Google Scholar 

  134. Tuominen EKJ, Wallace CJA, Kinnunen PKJ. Phospholipid-cytochrome c interaction. J Biol Chem, 2002, 277: 8822–8826

    Article  CAS  Google Scholar 

  135. Liu X, Kim CN, Yang J, Jemmerson R, Wang X. Induction of apoptotic program in cell-free extracts: requirement for dATP and cytochrome C. Cell, 1996, 86: 147–157

    Article  CAS  Google Scholar 

  136. Hajnóczky G, Davies E, Madesh M. Calcium signaling and apoptosis. Biochem Biophys Res Commun, 2003, 304: 445–454

    Article  CAS  Google Scholar 

  137. Huang Y, Liu L, Shi C, Huang J, Li G. Electrochemical analysis of the effect of Ca2+ on cardiolipin-cytochrome c interaction. Biochim Biophys Acta, 2006, 1760: 1827–1830

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to GenXi Li.

Additional information

Support from the National Natural Science Foundation of China (Grant Nos. 90406005 & 20575028) and the Program for New Century Excellent Talents in University, the Chinese Ministry of Education (Grant No. NCET-04-0452).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhou, N., Cao, Y. & Li, G. Electron transfer and interfacial behavior of redox proteins. Sci. China Chem. 53, 720–736 (2010). https://doi.org/10.1007/s11426-010-0134-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-010-0134-8

Keywords

Navigation