Skip to main content
Log in

Bimetallic amine-bridged bis(phenolate) lanthanide aryloxides and alkoxides: synthesis, characterization, and application in the ring-opening polymerization of rac-lactide and rac-β-butyrolactone

  • Articles
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

A series of neutral bimetallic lanthanide aryloxides p-C6H4[OLnL(THF) n ]2 [Ln = Y (1), Yb (2), Sm (3) (n = 1) and La (4) (n = 2), L = Me2NCH2CH2N{CH2-(2-O-C6H2-tBu2-3,5)}2] and alkoxides p-C6H4CH2[OLnL(THF)]2 [Ln = Y (5), Yb (6)] supported by an amine-bridged bis(phenolate) ligand have been synthesized through one-pot reactions of Ln(C5H5)3(THF), LH2 with p-benzenediol and 1,4-benzenedimethanol, respectively. All complexes have been fully characterized by elemental analyses, single-crystal X-ray diffraction analysis, and IR and multi-nuclear NMR spectroscopy (in the cases of 1, 4 and 5). Study of their catalytic behavior revealed that, in general, all complexes are efficient initiators for the polymerization of rac-lactide (LA) and rac-β-butyrolactone (BBL), except for 3 and 4 in the case of BBL. The influence imposed by lanthanides of different ionic radii and initiating groups of different structures on the activity, controllability, and stereoselectivity of polymerization were systematically studied and compared. Highly heterotactic PLA (P r up to 0.99) and syndiotactic PHB (P r ≈ 0.81) with high molecular weight and narrow polydispersity formed and were automatically capped with hydroxyl functionality at both ends.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ragauskas AJ, Williams CK, Davison BH, Britovsek G, Cairney J, Eckert CA, Frederick Jr WJ, Hallett JP, Leak DJ, Liotta CL, Mielenz JR, Murphy R, Templer R, Tschaplinski T. The path forward for biofuels and biomaterials. Science, 2006, 31: 484–489

    Article  Google Scholar 

  2. Williams CK, Hillmyer MA. Polymers from renewable resources: a perspective for a special issue of polymer reviews. Polym Rev, 2008, 48: 1–10

    Article  CAS  Google Scholar 

  3. Dove AP. Controlled ring-opening polymerisation of cyclic esters: polymer blocks in self-assembled nanostructures. Chem Commun, 2008: 6446–6470

    Google Scholar 

  4. Platel RH, Hodgson LM, Williams CK. Biocompatible initiators for lactide polymerization. Polym Rev, 2008, 48: 11–63

    Article  CAS  Google Scholar 

  5. Inkinen S, Hakkarainen M, Albertsson AC, Sodergard A. From lactic acid to poly(lactic acid) (PLA): characterization and analysis of PLA and its precursors. Biomacromolecules, 2011, 12: 523–532

    Article  CAS  Google Scholar 

  6. Mecking S, Nature or petrochemistry?—Biologically degradable materials. Angew Chem Int Ed, 2004, 43: 1078–1085

    Article  CAS  Google Scholar 

  7. Dechy-Cabaret O, Martin-Vaca B, Bourissou D. Controlled ring-opening polymerization of lactide and glycolide. Chem Rev, 2004, 104: 6147–6176

    Article  CAS  Google Scholar 

  8. O’Keefe BJ, Hillmyer MA, Tolman WB. Polymerization of lactide and related cyclic esters by discrete metal complexes. J Chem Soc, Dalton Trans, 2001: 2215–2224

    Google Scholar 

  9. Wu J, Yu TL, Chen CT, Lin CC. Recent developments in main group metal complexes catalyzed/initiated polymerization of lactides and related cyclic esters. Coord Chem Rev, 2006, 250: 602–626

    Article  CAS  Google Scholar 

  10. Arbaoui A, Redshaw C. Metal catalysts for 3-caprolactone polymerization. Polym Chem, 2010, 1: 801–826

    Article  CAS  Google Scholar 

  11. Thomas CM. Stereocontrolled ring-opening polymerization of cyclic esters: synthesis of new polyester microstructures. Chem Soc Rev, 2010, 39: 165–173

    Article  CAS  Google Scholar 

  12. Stanford MJ, Dove AP. Stereocontrolled ring-opening polymerisation of lactide. Chem Soc Rev, 2010, 39: 486–494

    Article  CAS  Google Scholar 

  13. Dijkstra PJ, Du H, Feijen J. Single site catalysts for stereoselective ring-opening polymerization of lactides. Polym Chem, 2011, 2: 520–527

    Article  CAS  Google Scholar 

  14. Chamberlain BM, Cheng M, Moore DR, Ovitt TM, Lobkovsky EB, Coates GW. Polymerization of lactide with zinc and magnesium β-diiminate complexes: stereocontrol and mechanism. J Am Chem Soc, 2001, 123: 3229–3238

    Article  CAS  Google Scholar 

  15. Williams CK, Breyfogle LE, Choi SK, Nam W, Young Jr VG, Hillmyer MA, Tolman WB. A highly active zinc catalyst for the controlled polymerization of lactide. J Am Chem Soc, 2003, 125: 11350–11359

    Article  CAS  Google Scholar 

  16. Chen CT, Chan CY, Huang CA, Chen MT, Peng KF. Zinc anilido-oxazolinate complexes as initiators for ring opening polymerization. Dalton Trans, 2007: 4073–4078

    Google Scholar 

  17. Silvernail CM, Yao LJ, Hill LMR, Hillmyer MA, Tolman WB. Structural and mechanistic studies of bis(phenolato)amine zinc(II) catalysts for the polymerization of ɛ-caprolactone. Inorg Chem, 2007, 46: 6565–6574

    Article  CAS  Google Scholar 

  18. Drouin F, Oguadinma PO, Whitehorne TJJ, Prud’homme RE, Schaper F. Lactide polymerization with chiral β-diketiminate zinc complexes. Organometallics, 2010, 29: 2139–2147

    Article  CAS  Google Scholar 

  19. Darensbourg DJ, Karroonnirun O. Ring-opening polymerization of lactides catalyzed by natural amino-acid based zinc catalysts. Inorg Chem, 2010, 49: 2360–2371

    Article  CAS  Google Scholar 

  20. Wang L, Ma H. Zinc complexes supported by multidentate aminophenolate ligands: synthesis, structure and catalysis in ring-opening polymerization of rac-lactide. Dalton Trans, 2010, 39: 7897–7910

    Article  CAS  Google Scholar 

  21. Liang LC, Lee WY, Tsai TL, Hsua YL, Leeb TY. Amido phosphine complexes of zinc: synthesis, structure, and catalytic ring-opening polymerization of ɛ-caprolactone. Dalton Trans, 2010, 39: 8748–8758

    Article  CAS  Google Scholar 

  22. Petrus R, Sobota P. Zinc Complexes supported by maltolato ligands: synthesis, structure, solution behavior, and application in ring-opening polymerization of lactides. Organometallics, 2012, 31: 4755–4762

    Article  CAS  Google Scholar 

  23. Song S, Zhang X, Ma H, Yang Y. Zinc complexes supported by claw-type aminophenolate ligands: synthesis, characterization and catalysis in the ring-opening polymerization of rac-lactide. Dalton Trans, 2012, 41: 3266–3277

    Article  CAS  Google Scholar 

  24. Rieth LR, Moore DR, Lobkovsky EB, Coates GW. Single-site β-diiminate zinc catalysts for the ring-opening polymerization of β-butyrolactone and β-valerolactone to poly(3-hydroxya-lkanoates). J Am Chem Soc, 2002, 124: 15239–15248

    Article  CAS  Google Scholar 

  25. Ovitt TM, Coates GW. Stereochemistry of lactide polymerization with chiral catalysts: new opportunities for stereocontrol using polymer exchange mechanisms. J Am Chem Soc, 2002, 124: 1316–1326

    Article  CAS  Google Scholar 

  26. Nomura N, Ishii R, Yamamoto Y, Kondo T. Stereoselective ring-opening polymerization of a racemic lactide by using achiral Salen- and Homosalen-aluminum complexes. Chem Eur J, 2007, 13: 4433–4451

    Article  CAS  Google Scholar 

  27. Bouyahyi M, Grunova E, Marquet N, Kirillov E, Thomas CM, Roisnel T, Carpentier JF. Aluminum complexes of fluorinated dialkoxy-diimino Salen-like ligands: syntheses, structures, and use in ring-opening polymerization of cyclic esters. Organometallics, 2008, 27: 5815–5825

    Article  CAS  Google Scholar 

  28. Pappalardo D, Annunziata L, Pellecchia C. Living ring-opening homo- and copolymerization of ɛ-caprolactone and L- and D,L-lactides by dimethyl (salicylaldimin-ato)aluminum compounds Macromolecules, 2009, 42: 6056–6062

    Article  CAS  Google Scholar 

  29. Drouin F, Oguadinma PO, Whitehorne TJJ, Prud’homme RE, Schaper F. Lactide polymerization with chiral β-diketiminate zinc complexes. Organometallics, 2010, 29: 2139–2147

    Article  CAS  Google Scholar 

  30. Schwarz AD, Chu Z, Mountford P. Sulfonamide-supported aluminum catalysts for the ring-opening polymerization of rac-lactide. Organometallics, 2010, 29: 1246–1260

    Article  CAS  Google Scholar 

  31. Bouyahyi M, Roisnel T, Carpentier JF. Aluminum complexes of fluorinated β-diketonate ligands: syntheses,structures, intramolecular reduction, and use in ring-opening polymerization of lactide. Organometallics, 2010, 29: 491–500

    Article  CAS  Google Scholar 

  32. Bakewell C, Platel RH, Cary SK, Hubbard SM, Roaf JM, Levine AC, White AJP, Long NJ, Haaf M, Williams CK. Bis(8-quinolinolato)aluminum ethyl complexes: iso-selectiv initiators for rac-lactide polymerization. Organometallics, 2012, 31: 4729–4736

    Article  CAS  Google Scholar 

  33. Lian B, Ma H, Spaniol TP, Okuda J. Neutral and cationic aluminium complexes containing a chiral (OSSO)-type bis(phenolato) ligand: synthesis, structures and polymerization activity. Dalton Trans, 2009: 9033–9042

    Google Scholar 

  34. Buffet JC, Okuda J, Arnold PL. Chiral indium alkoxide complexes as initiators for the stereoselective ring-opening polymerization of rac-lactide. Inorg Chem, 2010, 49: 419–426

    Article  CAS  Google Scholar 

  35. Chisholm MH, Gallucci J, Phomphrai K. Lactide polymerization by well-defined calcium coordination complexes: comparisons with related magnesium and zinc chemistry. Chem Commun, 2003: 48–49

    Google Scholar 

  36. Chmura AJ, Davidson MG, Frankis CJ, Jones MD, Lunnb MD. Highly active and stereoselective zirconium and hafnium alkoxide initiators for solvent-free ring-opening polymerization of rac-lactide. Chem Commun, 2008: 1293–1295

    Google Scholar 

  37. Dove AP, Gibson VC, Marshall EL, Rzepa HS, White AJP, Williams DJ. Synthetic, structural, mechanistic, and computational studies on single-site β-diketiminate tin(II) initiators for the polymerization of rac-lactide. J Am Chem Soc, 2006, 128: 9834–9843

    Article  CAS  Google Scholar 

  38. Marshall EL, Gibson VC, Rzepa HS. A computational analysis of the ring-opening polymerization of rac-lactide initiated by single-site β-diketiminate metal complexes: defining the mechanistic pathway and the origin of stereocontrol. J Am Chem Soc, 2005, 127: 6048–6051

    Article  CAS  Google Scholar 

  39. Chmura AJ, Chuck CJ, Davidson MG, Jones MD, Lunn MD, Bull SD, Mahon MF. A germanium alkoxide supported by a C3-symmetric ligand for the stereoselective synthesis of highly heterotactic polylactide under solvent-free conditions. Angew Chem Int Ed, 2007, 46: 2280–2283

    Article  CAS  Google Scholar 

  40. Chmura AJ, Davidson MG, Jones MD, Lunn MD, Mahon MF, Johnson AF, Khunkamchoo P, Roberts SL, Wong SSF. Group 4 complexes with aminebisphenolate ligands and their application for the ring opening polymerization of cyclic esters. Macromolecules, 2006, 39: 7250–7257

    Article  CAS  Google Scholar 

  41. Zelikoff AL, Kopilov J, Goldberg I, Coates GW, Kol M. New facets of an old ligand: titanium and zirconium complexes of phenylenediamine bis(phenolate) in lactide polymerisation catalysis. Chem Commun, 2009: 6804–6806

    Google Scholar 

  42. Stopper A, Okuda J, Kol M. Ring-opening polymerization of lactide with Zr complexes of {ONSO} ligands: from heterotactically inclined to isotactically inclined poly(lactic acid). Macromolecules, 2012, 45: 698–704

    Article  CAS  Google Scholar 

  43. Sarazin Y, Liu B, Roisnel T, Maron L, Carpentier JF. Discrete, solvent-free alkaline-earth metal cations: metal…fluorine interactions and ROP catalytic activity. J Am Chem Soc, 2011, 133: 9069–9087

    Article  CAS  Google Scholar 

  44. Xu C, Yu I, Mehrkhodavandi P. Highly controlled immortal polymerization of β-butyrolactone by a dinuclear indium catalyst. Chem Commun, 2012, 48: 6806–6808

    Article  CAS  Google Scholar 

  45. Amgoune A, Thomas CM, Roisnel T, Carpentier JF. Ring-opening polymerization of lactide with group 3 metal complexes supported by dianionic alkoxy-amino-bisphenolate ligands: combining high activity, productivity, and selectivity. Chem Eur J, 2006, 12: 169–179

    Article  CAS  Google Scholar 

  46. Amgoune A, Thomas CM, Ilinca S, Roisnel T, Carpentier JF. Highly active, productive, and syndiospecific yttrium initiators for the polymerization of racemic β-butyrolactone. Angew Chem Int Ed, 2006, 45: 2782–2784

    Article  CAS  Google Scholar 

  47. Amgoune A, Thomas CM, Carpentier JF. Yttrium complexes as catalysts for living and immortal polymerization of lactide to highly heterotactic PLA. Rapid Commun, 2007, 28: 693–697

    Article  CAS  Google Scholar 

  48. Ajellal N, Bouyahyi M, Amgoune A, Thomas CM, Bondon A, Pillin I, Grohens Y, Carpentier JF. Syndiotactic-enriched poly(3-hydroxybutyrate)s via stereoselective ring-opening polymerization of racemic β-butyrolactone with discrete yttrium catalysts. Macromolecules, 2009, 42: 987–993

    Article  CAS  Google Scholar 

  49. Bouyahyi M, Ajellal N, Kirillov E, Thomas CM, Carpentier JF. Exploring electronic versus steric effects in stereoselective ring-opening polymerization of lactide and β-butyrolactone with amino-alkoxy-bis(phenolate)-yttrium complexes. Chem Eur J, 2011, 17: 1872–1883

    Article  CAS  Google Scholar 

  50. Amgoune A, Thomas CM, Carpentier JF. Controlled ring-opening polymerization of lactide by group 3 metal complexes. Pure Appl Chem, 2007, 79: 2013–2030

    Article  CAS  Google Scholar 

  51. Ajellal N, Lyubov DM, Sinenkov MA, Fukin GK, Cherkasov AV, Thomas CM, Carpentier JF, Trifonov AA. Bis(guanidinate) alkoxide complexes of lanthanides: synthesis, structures and use in immortal and stereoselective ring-opening polymerization of cyclic esters. Chem Eur J, 2008, 14: 5440–5448

    Article  CAS  Google Scholar 

  52. Mahrova TV, Fukin GK, Cherkasov AV, Trifonov AA, Ajellal N, Carpentier JF. Yttrium complexes supported by linked bis(amide) ligand: synthesis, structure, and catalytic activity in the ring-opening polymerization of cyclic esters. Inorg Chem, 2009, 48: 4258–4266

    Article  CAS  Google Scholar 

  53. Grunova E, Kirillov E, Roisnel T, Carpentier JF. Group 3 metal complexes supported by tridentate pyridine- and thiophene-linked bis(naphtholate) ligands: synthesis, structure, and use in stereoselective ring-opening polymerization of racemic lactide and β-butyrolactone. Dalton Trans, 2010, 39: 6739–6752

    Article  CAS  Google Scholar 

  54. Carpentier JF. Discrete metal catalysts for stereoselective ring-opening polymerization of chiral racemic β-lactones. Macromol Rapid Commun, 2010, 31: 1696–1705

    Article  CAS  Google Scholar 

  55. Cai CX, Amgoune A, Lehmannb CW, Carpentier JF. Stereoselective ring-opening polymerization of racemic lactide using alkoxy-amino-bis(phenolate) group 3 metal complexes. Chem Commun, 2004: 330–331

    Google Scholar 

  56. Ma H, Spaniol TP, Okuda J. Rare-earth metal complexes supported by 1,ω-dithiaalkanediyl-bridge bis(phenolato) ligands: synthesis, structure, and heteroselective ring-opening polymerization of rac-lactide. Inorg Chem, 2008, 47: 3328–3339

    Article  CAS  Google Scholar 

  57. Ma H, Spaniol TP, Okuda J. Highly heteroselective ring-opening polymerization of rac-lactide initiated by bis(phenolato)scandium complexes. Angew Chem Int Ed, 2006, 45: 7818–7821

    Article  Google Scholar 

  58. Ma H, Okuda J. Kinetics and mechanism of L-lactide polymerization by rare earth metal silylamido complexes: effect of alcohol addition. Macromolecules, 2005, 38: 2665–2673

    Article  CAS  Google Scholar 

  59. Buffet JC, Kapelski A, Okuda J. Stereoselective polymerization of meso-lactide-syndiotactic polylactide by heteroselective initiators based on trivalent metals. Mcromolecules, 2010, 43: 10201–10203

    Article  CAS  Google Scholar 

  60. Dyer HE, Huijser S, Schwarz AD, Wang C, Duchateau R, Mountford P. Zwitterionic bis(phenolate)amine lanthanide complexes for the ring-opening polymerisation of cyclic esters. Dalton Trans, 2008: 32–35

    Google Scholar 

  61. Dyer HE, Huijser S, Susperregui N, Bonnet F, Schwarz AD, Duchateau R, Maron L, Mountford P. Ring-opening polymerization of rac-lactide by bis(phenolate)amine-supported samarium borohydride complexes: an experimental and DFT study. Organometallics, 2010, 29: 3602–3621

    Article  CAS  Google Scholar 

  62. Clark L, Cushion MG, Dyer HE, Schwarz AD, Duchateaub R, Mountford P. Dicationic and zwitterionic catalysts for the amine-initiated,immortal ring-opening polymer-isation of rac-lactide: facile synthesis of amine-terminated, highly heterotactic PLA. Chem Commun, 2010, 46: 273–275

    Article  CAS  Google Scholar 

  63. Bonnet F, Cowley AR, Mountford P. Lanthanide borohydride complexes supported by diaminobis(phenoxide) ligands for the polymerization of ɛ-caprolactone and L- and rac-lactide. Inorg Chem, 2005, 44: 9046–9055

    Article  CAS  Google Scholar 

  64. Liu X, Shang X, Tang T, Hu N, Pei F, Cui D, Chen X, Jing X. Achiral lanthanide alkyl complexes bearing N,O multidentate ligands. Synthesis and catalysis of highly heteroselective ring-opening polymerization of rac-lactide. Organometallics, 2007, 26: 2747–2757

    Article  Google Scholar 

  65. Zhao W, Cui D, Liu X, Chen X. Facile synthesis of hydroxyl-ended, highly stereoregular, star-shaped poly(lactide) from immortal ROP of rac-lactide and kinetics study. Macromolecules, 2010, 43, 6678–6684

    Article  CAS  Google Scholar 

  66. Zhao W, Wang Y, Liu X, Cui D. Facile synthesis of fluorescent dye labeled biocompatible polymers via immortal ring-opening polymerization. Chem Commun, 2012, 48: 4483–4485

    Article  CAS  Google Scholar 

  67. Kramer JW, Treitler DS, Dunn EW, Castro PM, Roisnel T, Thomas CM, Coates GW. Polymerization of enantiopure monomers using syndiospecific catalysts: a new approach to sequence control in polymer synthesis. J Am Chem Soc, 2009, 131: 16042–16044

    Article  CAS  Google Scholar 

  68. Nie K, Gu X, Yao Y, Zhang Y, Shen Q. Synthesis and characterization of amine bridged bis(phenolate) lanthanide aryloxides and their application in the polymerization of lactide. Dalton Trans, 2010, 39: 6832–6840

    Article  CAS  Google Scholar 

  69. Nie K, Fang L, Yao Y, Zhang Y, Shen Q, Wang Y. Synthesis and characterization of amine-bridged bis(phenolate)lanthanide alkoxides and their application in the controlled polymerization of rac-lactide and rac-β-butyrolactone. Inorg Chem, 2012, 51: 11133–11143

    Article  CAS  Google Scholar 

  70. Luo Y, Li W, Lin D, Yao Y, Zhang Y, Shen Q. Lanthanide alkyl complexes supported by a piperazidine-bridged bis(phenolato) ligand: synthesis, structural characterization, and catalysis for the polymerization of L-lactide and rac-lactide. Organometallics, 2010, 29: 3507–3514

    Article  CAS  Google Scholar 

  71. Li W, Zhang Z, Yao Y, Zhang Y, Shen Q. Control of conformations of piperazidine-bridged bis(phenolato) groups: syntheses and structures of bimetallic and monometallic lanthanide amides and their application in the polymerization of lactides. Organometallics, 2012, 31: 3499–3511

    Article  CAS  Google Scholar 

  72. Zhang J, Qiu J, Yao Y, Zhang Y, Wang Y, Shen Q. Synthesis and characterization of lanthanide amides bearing aminophenoxy ligands and their catalytic activity for the polymerization of lactides. Organometallics, 2012, 31: 3138–3148

    Article  CAS  Google Scholar 

  73. Nie K, Gu W, Yao Y, Zhang Y, Shen Q. Synthesis and characterization of Salalen lanthanide complexes and their application in the polymerization of rac-lactide. Organometallics, 2013, 32: 2608–2617

    Article  CAS  Google Scholar 

  74. Otero A, Fernández-Baeza J, Lara-Sánchez A, Alonso-Moreno C, Márquez-Segovia I, Sánchez-Barba LF, Rodríguez AM. Ring-opening polymerization of cyclic esters by an enantiopure heteroscorpionate rare earth initiator. Angew Chem Int Ed, 2009, 48: 2176–2179

    Article  CAS  Google Scholar 

  75. Sánchez-Barba LF, Hughes DL, Humphrey SM, Bochmann M. New bis(allyl)(diketiminato) and tris(allyl) lanthanide complexes and their reactivity in the polymerization of polar monomers. Organometallics, 2005, 24: 3792–3799

    Article  Google Scholar 

  76. Cao TPA, Buchard A, Le Goff XF, Auffrant A, Williams CK. Phosphasalen yttrium complexes: highly active and stereoselective initiators for lactide polymerization. Inorg Chem, 2012, 51: 2157–2169

    Article  CAS  Google Scholar 

  77. Bakewell C, Cao TPA, Long N, Le Goff XF, Auffrant A, Williams CK. Yttrium phosphasalen initiators for rac-lactide poly-merization: excellent rates and high iso-selectivities. J Am Chem Soc, 2012, 134: 20577–20580

    Article  CAS  Google Scholar 

  78. Zhou L, Yao Y, Zhang Y, Shen Q. Synthesis, charaterization, and reactive of amine bis(phenolato) cyclopentadienyl lanthanide complexes. J Rare Earths, 2007, 25: 544–548

    Article  CAS  Google Scholar 

  79. Zhang Z, Xu X, Li W, Yao Y, Zhang Y, Shen Q, Luo Y. Synthesis of rare-earth metal amides bearing an imidazolidine-bridged bis(phenolato) ligand and their application in the polymerization of L-lactide. Inorg Chem, 2009, 48: 5715–5724

    Article  CAS  Google Scholar 

  80. Li H, Marks TJ. Nuclearity and cooperativity effects in binuclearcatalysts and cocatalysts for olefin polymerization. Proc Natl Acad Sci USA, 2006, 103: 15295

    Article  CAS  Google Scholar 

  81. Wang S, Cui W, Bei J. Bulk and surface modifications of polylactide. Anal Bioanal Chem, 2005, 381: 547–556

    Article  CAS  Google Scholar 

  82. Noga DE, Petrie TA, Kumar A, Weck M, García AJ, Collard DM. Synthesis and modification of functional poly(lactide) copolymers: toward biofunctional materials. Biomacromolecules, 2008, 9: 2056–2062

    Article  CAS  Google Scholar 

  83. Williams CK. Synthesis of functionalized biodegradable polyesters. Chem Soc Rev, 2007, 36: 1573–1580

    Article  CAS  Google Scholar 

  84. Guo N, Stern CL, Marks TJ. Bimetallic effects in homopolymerization of styrene and copolymerization of ethylene and styrenic comonomers: scope, kinetics, and mechanism. J Am Chem Soc, 2008, 130: 2246–2261

    Article  CAS  Google Scholar 

  85. Rodriguez BA, Delferro M, Marks TJ. Neutral bimetallic nickel(II) phenoxyiminato catalysts for highly branched polyethylenes and ethylene-norbornene copolymerizations. Organometallics, 2008, 27: 2166–2168

    Article  CAS  Google Scholar 

  86. Birmingham JM, Wilkinson G. The cyclopentadienides of scandium, yttrium and some rare earth elements. J Am Chem Soc, 1956, 78: 42–44

    Article  CAS  Google Scholar 

  87. Lee BY, Kwon HY, Lee SY, Na SJ, Han S, Yun H, Lee H, Park YW. Bimetallic anilido-aldimine zinc complexes for epoxide/CO2 copolymerization. J Am Chem Soc, 2005, 127: 3031–3037

    Article  CAS  Google Scholar 

  88. Xiao Y, Wang Z, Ding K. Intramolecularly dinuclear magnesium complex catalyzed copolymerization of cyclohexene oxide with CO2 under ambient CO2 pressure: kinetics and mechanism. Macromolecules, 2006, 39: 128–137

    Article  CAS  Google Scholar 

  89. Tshuva EY, Goldberg I, Kol M. Zirconium complexes of amine-bis(phenolate) ligands as catalysts for 1-hexene polymerization: peripheral structural parameters strongly affect reactivity. Organometallics, 2001, 20: 3017–3028

    Article  CAS  Google Scholar 

  90. Atwood JL, Hunter W, Wayda AL, Evans WJ. Synthesis and crystallographic characterization of a dimeric alkynide-bridged organolanthanide: [(C5H5)2ErCrC≡C(CH3)3]2. Inorg Chem, 1981, 20: 4115–4119

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to YingMing Yao.

Additional information

Dedicated to Professor Qian Changtao on the occasion of his 80th birthday.

YAO YingMing obtained his BSc degree from Sichuan University in 1990, and his MSc and PhD degrees from Changchun Institute of Applied Chemistry, Chinese Academy of Sciences in 1993 (supervisor: Professor Tianru Fang) and 1996 (supervisor: Professor Qi Shen), respectively. During 1997 to 1999, he carried out postdoctoral research in Hong Kong University. He then joined Soochow University in 1999 as an assistant professor, and was promoted to full professor in 2004. He has co-authored around 170 publications in peer-reviewed journals, and has filed 10 patents. His research interests include rare-earth metal complexes and their application in polymer and organic chemistry.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nie, K., Feng, T., Song, F. et al. Bimetallic amine-bridged bis(phenolate) lanthanide aryloxides and alkoxides: synthesis, characterization, and application in the ring-opening polymerization of rac-lactide and rac-β-butyrolactone. Sci. China Chem. 57, 1106–1116 (2014). https://doi.org/10.1007/s11426-014-5142-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-014-5142-7

Keywords

Navigation