Skip to main content
Log in

Stereoselective interactions of chiral dipeptides on amylose based chiral stationary phases

  • Articles
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

Dipeptides are stereo-specifically involved in several biological functions that are challenging to separate enantiomerically. Elution order of enantiomers is an important issue in chiral chromatography. Amylose tris-(3,5-dimethylphenylcarbamate) chiral stationary phase (CSP) is the best and most-widely-used CSP in chiral separations, but experimental data of enantiomeric separation of dipeptides on this CSP is lacking. Simulation studies were conducted to determine the order of elution and the chiral recognition mechanism of didpetides on this CSP. Results indicated that the docking energy of SR-enantiomers were higher than SS-antipodes. The range of docking energies for SR-enantiomers was −7.44 to −5.92 kcal/mol with CSP, but −7.15 to −5.87 kcal/mol for SS-stereoisomers. Therefore it is predicted that SS-enantiomer will elute first, followed by SR-antipode. Furthermore, hydrogen bondings, van der Waal’s interactions and electrostatic interactions were observed among SR- and SS-enantiomers and chiral grooves of CSP. The number of hydrogen bonds was one in each enantiomer binding except S-Ala-R-Tyr, which contained two hydrogen bonds. No hydrogen bond was found in S-Ala-R-Trp, S-Leu-S-Trp, and S-Leu-S-Tyr dipeptides bindings. The chiral recognition mechanisms dictate different strengths of stereoselective bindings of the enantiomers on CSP.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Humphrey MJ, Ringrose PS. Peptides and related drugs: a review of their absorption, metabolism, and excretion. Drug Metabolism Rev, 1986, 17: 283–310

    Article  CAS  Google Scholar 

  2. Prasad C. Bioactive cyclic dipeptides. Peptides, 1995, 16: 151–164

    Article  CAS  Google Scholar 

  3. Yagasaki M, Hashimoto S. Synthesis and application of dipeptides: current status and perspectives. Appl Microbiol Biotech, 2008, 81: 13–22

    Article  CAS  Google Scholar 

  4. Soga T, Sugimoto M, Honma M. Mori M, Igarashi K, Kashikura K, Ikeda S, Hirayama A, Yamamoto T, Yoshida H, Otsuka M, Tsuji S, Yatomi Y, Sakuragawa T, Watanabe H, Nihei K, Saito T, Kawata S, Suzuki H, Tomita M, Suematsu M. Serum metabolomics reveals γ-glutamyl dipeptides as biomarkers for discrimination among different forms of liver disease. J Hepatol, 2011, 55: 896–905

    Article  CAS  Google Scholar 

  5. Czerwenka C, Lindner W. Stereoselective peptide analysis. Anal Bioanal Chem, 2005, 382: 599–638

    Article  CAS  Google Scholar 

  6. Schmid MG. Chiral metal-ion complexes for enantioseparation by capillary electrophoresis and capillary electrochromatography: a selective review. J Chromatogr A, 2012, 1267: 10–16

    Article  CAS  Google Scholar 

  7. Scriba GKE. Recent advances in enantioseparations of peptides by capillary electrophoresis. Electrophoresis, 2003, 24: 4063–4077

    Article  CAS  Google Scholar 

  8. Soukup-Hein RJ, Schneiderheinze J, Mehelic P, Armstrong DW. LC and LC-MS separation of peptides on macrocyclic gly copeptide stationary phases: diastereomeric series and large peptides. Chromatographia, 2007, 66: 461–468

    Article  CAS  Google Scholar 

  9. Kašička V. Recent developments in CE and CEC of peptides (2009-2011). Electrophoresis, 2012, 33: 48–73

    Article  Google Scholar 

  10. Fornstedt T, Sajonz P, Guiochon G. A closer study of chiral retention mechanisms. Chirality, 1998, 10: 375–381

    Article  CAS  Google Scholar 

  11. Asnin L. Adsorption models in chiral chromatography. J Chromatogr A, 2012, 1269: 3–25

    Article  CAS  Google Scholar 

  12. Francotte ER. Enantioselective chromatography as a powerful alternative for the preparation of drug enantiomers. J Chromatogr A, 2001, 906: 379–397

    Article  CAS  Google Scholar 

  13. Zhang T, Kientzy C, Franco P, Ohnishi A, Kagamihara Y, Kurosawa H. Solvent versatility of immobilized 3,5-dimethylphenylcarbamate of amylose in enantiomeric separations by HPLC. J Chromatogr A, 2005, 1075: 65–75

    Article  CAS  Google Scholar 

  14. Yashima E, Yamamoto C, Okamoto Y. Enantioseparation on fluoro-methylphenylcarbamates of cellulose and amylose as chiral stationary phases for high-performance liquid chromatography. Polymer J, 1995, 27: 856–861

    Article  CAS  Google Scholar 

  15. Tang Y, Reepmeyer JC, Revelle LK, Wilson JA. Enantioseparation of 3-phenylacetylamino-2,6-piperidinedione and related chiral compounds. J Chromatogr A, 1996, 752: 93–99

    Article  CAS  Google Scholar 

  16. Yashima E, Sahavattanapog P, Okamoto Y. HPLC enantioseparation on cellulose tris(3,5-dimethylphenylcarbamate) as a chiral stationary phase: influences of pore size of silica gel, coating amount, coating solvent, and column temperature on chiral discrimination. Chirality, 1996, 8: 446–451

    Article  CAS  Google Scholar 

  17. Chankvetadze B, Yashima E, Okamoto Y. Dimethyl-, dichloro- and chloromethylphenyl carbamates of amylose as chiral stationary phases for high-performance liquid chromatography. J Chromatogr A, 1995, 694: 101–109

    Article  CAS  Google Scholar 

  18. Yashima E, Kasashima E, Okamoto Y. Enantioseparation on 4-halogen-substituted phenylcarbamates of amylose as chiral stationary phases for high-performance liquid chromatography. Chirality, 1997, 9: 63–68

    Article  CAS  Google Scholar 

  19. Cass QB, Tiritan ME, Calafatti SA, Matlin SA. Enantioseparation on amylose tris (3, 5-dimethoxyphenyl carbamate): application to commercial pharmaceutical chiral drugs. J Liq Chromatogr & Related Technol, 1999, 22: 3091–3099

    Article  CAS  Google Scholar 

  20. Wu SH, Lin SL, Lai SY, Chou TH. Separation of enatiomeric protected dipeptides by chiral high-performance liquid chromatography. J Chromatogr A, 1990, 514: 325–329

    Article  CAS  Google Scholar 

  21. Lin SL, Chen ST, Wu SH, Wang KT. Separation of aspartame and its precursor stereoisomers by chiral chromatography. J Chromatogr A, 1991, 540: 392–396

    Article  CAS  Google Scholar 

  22. Aboul-Enein HY, Ali I. Studies on the effect of alcohols on the chiral discrimination mechanisms of amylose stationary phase on the enantioseparation of nebivolol by HPLC. J Biochem Biophys Meth, 2001, 48: 175–188

    Article  CAS  Google Scholar 

  23. Ali I, Al-Othman ZA, Al-Warthan A, Alam SD, Farooqi JA. Enantiomeric separation and simulation studies of pheniramine, oxybutynin, cetirizine, and brinzolamide chiral drugs on amylose-based columns. Chirality, 2014, 26: 136–143

    Article  CAS  Google Scholar 

  24. Sanner MF. Python: a programming language for software integration and development. J Mol Graph Mod, 1999, 17: 57–61

    CAS  Google Scholar 

  25. Pettersen EF, Goddard TD, Huang CC, Couch GS, Greenblatt DM, Meng EC, Ferrin TE. UCSF Chimera — a visualization system for exploratory research and analysis. J Comp Chem, 2004, 25: 1605–1612

    Article  CAS  Google Scholar 

  26. Accelrys Software Inc., Discovery Studio Modeling Environment, Release 3.5. San Diego: Accelrys Software Inc., 2012

    Google Scholar 

  27. Gübitz G, Schmid MG. Chiral Separation Methods and Protocols Series: Methods in Molecular Biology. New York: Humana Press, 2004

    Google Scholar 

  28. Ali I, Lahoucine N, Ashraf G, Aboul-Enein HY. Chiral separations of piperidine-2,6-dione analogues on Chiralpak IA and Chiralpak IB columns by using HPLC. Talanta, 2006, 69: 1013–1017

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Imran Ali.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ali, I., Haque, A., Al-Othman, Z.A. et al. Stereoselective interactions of chiral dipeptides on amylose based chiral stationary phases. Sci. China Chem. 58, 519–525 (2015). https://doi.org/10.1007/s11426-014-5239-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-014-5239-z

Keywords

Navigation