Skip to main content
Log in

Maintenance of the activity of mono-dispersed Au and Ag nano-particles embedded in agar gel for ion-sensing and antimicrobial applications

  • Articles
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

Composite materials were synthesized by encapsulating Au and Ag nanoparticles in an agar gel matrix. These metallic nano-particles were found to be separately stored, so their optical, catalytic, and antibacterial properties were retained both in the composite gel and a composite membrane. The composite gels were stable under hard external conditions. Based on this, a sensor for the detection of Hg2+ was developed using the Au nanoparticle/agar composite gel. Antibacterial materials were achieved using the Ag nanoparticle/agar composite gel and composite membrane. These two Ag nanoparticle-based materials showed good antibacterial activity against Gram-negative Escherichia coli and Gram-positive Staphylococcus aureus.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Masala O, Seshadri R. Synthesis routes for large volumes of nanoparticles. Annu Rev Mater Res, 2004, 34: 41–81

    Article  CAS  Google Scholar 

  2. Cushing BL, Kolesnichenko VL, O’Connor CJ. Recent advances in the liquid-phase syntheses of inorganic nanoparticles. Chem Rev, 2004, 104: 3893–3946

    Article  CAS  Google Scholar 

  3. Ennas G, Falqui A, Marras S, Sangregorio C, Marongiu G. Influence of metal content on size, dispersion, and magnetic properties of iron-cobalt alloy nanoparticles embedded in silica matrix. Chem Mater, 2004, 16: 5659–5963

    Article  CAS  Google Scholar 

  4. Zhang X, Servos MR, Liu JW. Instantaneous and quantitative functionalization of gold nanoparticles with thiolated DNA using a pH-assisted and surfactant-free route. J Am Chem Soc, 2012, 134: 7266–7269

    Article  CAS  Google Scholar 

  5. Guo Y, Hu JS, Liang HP, Wan LJ, Bai CL. Highly dispersed metal nanoparticles in porous anodic alumina films prepared by a breathing process of polyacrylamide hydrogel. Chem Mater, 2003, 15: 4332–4336

    Article  CAS  Google Scholar 

  6. Boualleg M, Basset JM, Candy JP, Delichere P, Pelzer K, Veyre L, Thieuleux C. Regularly distributed and fully accessible Pt nanoparticles in silica pore channels via the controlled growth of a mesostructured matrix around Pt colloids. Chem Mater, 2009, 21: 775–777

    Article  CAS  Google Scholar 

  7. Cannas C, Musinu A, Peddis D, Piccaluga G. Synthesis and characterization of CoFe2O4 nanoparticles dispersed in a silica matrix by a sol-gel autocombustion method. Chem Mater, 2006, 18: 3835–3842

    Article  CAS  Google Scholar 

  8. Belova V, Mohwald H, Shchukin DG. Ultrasonic intercalation of gold nanoparticles into a clay matrix in the presence of surface-active materials. Part II: negative sodium dodecylsulfate and positive cetylt-rimethylammonium bromide. J Phys Chem C, 2009, 113: 6751–6760

    Article  CAS  Google Scholar 

  9. Belova V, Andreeva DV, Mohwald H, Shchukin DG. Ultrasonic intercalation of gold nanoparticles into clay matrix in the presence of surface-active materials. Part I: neutral polyethylene glycol. J Phys Chem C, 2009, 113: 5381–5389

    Article  CAS  Google Scholar 

  10. Shishino Y, Yonezawa T, Udagawa S, Hase K, Nishihara H. Preparation of optical resins containing dispersed gold nanoparticles by the matrix sputtering method. Angew Chem Int Ed, 2011, 3: 703–705

    Article  Google Scholar 

  11. Mejia ML, Agapiou K, Yang XP, Holliday BJ. Seeded growth of CdS nanoparticles within a conducting metallopolymer matrix. J Am Chem Soc, 2009, 131: 18196–18197

    Article  CAS  Google Scholar 

  12. Akamatsu K, Shinkai H, Ikeda S, Adachi S, Nawafune H, Tomita S. Controlling interparticle spacing among metal nanoparticles through metal-catalyzed decomposition of surrounding polymer matrix. J Am Chem Soc, 2005, 127: 7980–7981

    Article  CAS  Google Scholar 

  13. Cai J, Kimura S, Wada M, Kuga S. Nanoporous cellulose as metal nanoparticles support. Biomacromolecules, 2009, 10: 87–94

    Article  CAS  Google Scholar 

  14. Kuang M, Wang D, Möhwald H. Fabrication of Au@CaCO3 nanoparticles by in situ mineralization in hydrogel microspheres. Chem Mater, 2006, 18: 1073–1075

    Article  CAS  Google Scholar 

  15. Masuda Y, Yamagishi M, Seo WS, Koumoto K. Photoluminescence from ZnO nanoparticles embedded in an amorphous matrix. Cryst Growth Des, 2008, 8: 1503–1508

    Article  CAS  Google Scholar 

  16. Dawn A, Shiraki T, Ichikawa H, Takada A, Takahashi Y, Tsuchiya Y, Le TNL, Shinkai S. Stereochemistry-dependent, mechanoresponsive supramolecular host assemblies for fullerenes: a guest-induced enhancement of thixotropy. J Am Chem Soc, 2012, 134: 2161–2171

    Article  CAS  Google Scholar 

  17. Praharaj S, Nath S, Ghosh SK, Kundu S, Pal T. Immobilization and recovery of Au nanoparticles from anion exchange resin: resin-bound nanoparticle matrix as a catalyst for the reduction of 4-nitrophenol. Langmuir, 2004, 20: 9889–9892

    Article  CAS  Google Scholar 

  18. Bai S, Wu C, Gawlitza K, Klitzing RV, Ansorge-Schumacher MB, Wang D. Using hydrogel microparticles to transfer hydrophilic nanoparticles and enzymes to organic media via stepwise solvent exchange. Langmuir, 2010, 26: 12980–12987

    Article  CAS  Google Scholar 

  19. Sakamoto M, Tachikawa T, Fujitsuka M, Majima T. Three-dimensional writing of copper nanoparticles in a polymer matrix with two-color laser beams. Chem Mater, 2008, 20: 2060–2062

    Article  CAS  Google Scholar 

  20. Corbierre MK, Cameron NS, Sutton M, Mochrie SGJ, Lurio LB, Ruhm A, Lennox RB. Polymer-stabilized gold nanoparticles and their incorporation into polymer matrices. J Am Chem Soc, 2001, 123: 10411–10412

    Article  CAS  Google Scholar 

  21. Parlak O, Demir MM. Toward transparent nanocomposites based on polystyrene matrix and pmma-grafted CeO2 nanoparticles. ACS Appl Mater Interfaces, 2011, 3: 4306–4314

    Article  CAS  Google Scholar 

  22. Senesi AJ, Rozkiewicz DI, Reinhoudt DN, Mirkin CA. Agarose-assisted dip-pen nanolithography of oligonucleotides and proteins. ACS Nano, 2009, 3: 2394–2402

    Article  CAS  Google Scholar 

  23. Drisko GL, Wang X, Caruso RA. Strong silica monoliths with large mesopores prepared using agarose gel templates. Langmuir, 2011, 27: 2124–2127

    Article  CAS  Google Scholar 

  24. Chváez FV, Persson E, Halle B. Internal water molecules and magnetic relaxation in agarose gels. J Am Chem Soc, 2006, 128: 4902–4910

    Article  Google Scholar 

  25. Zhou J, Zhou M, Caruso RA. Agarose template for the fabrication of macroporous metal oxide structures. Langmuir, 2006, 22: 3332–3336

    Article  CAS  Google Scholar 

  26. Liu Y, Ling J, Huang CZ. Individually color-coded plasmonic nanoparticles for RGB analysis. Chem Commun, 2011, 47: 8121–8123

    Article  CAS  Google Scholar 

  27. Yguerabide J, Yguerabide EE. Light-scattering submicroscopic particles as highly fluorescent analogs and their use as tracer labels in clinical and biological applications. Anal Biochem, 1998, 262: 137–156

    Article  CAS  Google Scholar 

  28. Tao A, Sinsermsuksakul P, Yang P. Polyhedral silver nanocrystals with distinct scattering signatures. Angew Chem Int Ed, 2006, 28: 4597–4601

    Article  Google Scholar 

  29. Xiao L, Wei L, He Y, Yeung ES. Single molecule biosensing using color coded plasmon resonant metal nanoparticles. Anal Chem, 2010, 82: 6308–6314

    Article  CAS  Google Scholar 

  30. Wang H, Wang YX, Jin JY, Yang RH. Gold nanoparticle-based colorimetric and “turn-on” fluorescent probe for mercury(II) ions in aqueous solution. Anal Chem, 2008, 80: 9021–9028

    Article  CAS  Google Scholar 

  31. Daniel M, Astruc D. Gold nanoparticles: assembly, supramolecular chemistry, quantum-size-related properties, and applications toward biology, catalysis, and nanotechnology. Chem Rev, 2004, 104: 293–346

    Article  CAS  Google Scholar 

  32. Pal S, Tak YK, Song JM. Does the antibacterial activity of silver nanoparticles depend on the shape of the nanoparticle? A study of the Gram-negative bacterium Escherichia coli. Appl Environ Microbiol, 2007, 73: 1712–1720

    Article  CAS  Google Scholar 

  33. Morones JR, Elechiguerra JL, Camacho A, Holt K, Kouri JB, Ramírez JT, Yacaman MJ. The bactericidal effect of silver nanoparticles. Nanotechnology, 2005, 16: 2346–2353

    Article  CAS  Google Scholar 

  34. Long YJ, Li YF, Liu Y, Zheng JJ, Tang J, Huang CZ. Visual observation of the mercury-stimulated peroxidase mimetic activity of gold nanoparticles. Chem Commun, 2011, 47: 11939–11941

    Article  CAS  Google Scholar 

  35. Kim JS, Kuk E, Yu KN, Kim JH, Park SJ, Lee HJ, Kim SH, Park YK, Park YH, Hwang CY, Kim YK, Lee YS, Jeong DH, Cho MH. Antimicrobial effects of silver nanoparticles. Nanomed Nanotechnol Biol Med, 2007, 3: 95–101

    Article  CAS  Google Scholar 

  36. Joen HJ, Yi SC, Oh SG. Preparation and antibacterial effects of Ag-SiO2 thin films by sol-gel method. Biomaterials, 2003, 24: 4921–4928

    Article  Google Scholar 

  37. Su HL, Chou CC, Huang DJ, Lin SH, Pao IC, Lin JH. The disruption of bacterial membrane integrity through ROS generation induced by nanohybrids of silver and clay. Biomaterials, 2009, 30: 5979–5987

    Article  CAS  Google Scholar 

  38. Sondi I, Salopek-Sondi B. Silver nanoparticles as antimicrobial agent: a case study on E. coli as a model for Gram-negative bacteria. J Colloid Interface Sci, 2004, 275: 177–182

    Article  CAS  Google Scholar 

  39. Su KH, Wei QH, Zhang X, Mock JJ, Simth DR, Schultz S. Interparticle coupling effects on plasmon resonances of nanogold particles. Nano Lett, 2003, 3: 1087–1090

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuanfang Li.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Long, Y., Wang, Y., Liu, Y. et al. Maintenance of the activity of mono-dispersed Au and Ag nano-particles embedded in agar gel for ion-sensing and antimicrobial applications. Sci. China Chem. 58, 666–672 (2015). https://doi.org/10.1007/s11426-014-5292-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-014-5292-7

Keywords

Navigation