Skip to main content
Log in

Oxidative stress, nutritional antioxidants and beyond

  • Review
  • Published:
Science China Life Sciences Aims and scope Submit manuscript

Abstract

Free radical-induced oxidative stress contributes to the development of metabolic syndromes (Mets), including overweight, hyperglycemia, insulin resistance and pro-inflammatory state. Most free radicals are generated from the mitochondrial electron transport chain; under physiological conditions, their levels are maintained by efficient antioxidant systems. A variety of transcription factors have been identified and characterized that control gene expression in response to oxidative stress status. Natural antioxidant compounds have been largely studied for their strong antioxidant capacities. This review discusses the recent progress in oxidative stress and mitochondrial dysfunction in Mets and highlights the anti-Mets, anti-oxidative, and anti-inflammatory effect of polyphenols as potential nutritional therapy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abdel-Moneim, A., El-Twab, S.M.A., Yousef, A.I., Reheim, E.S.A., and Ashour, M.B. (2018). Modulation of hyperglycemia and dyslipidemia in experimental type 2 diabetes by gallic acid and p-coumaric acid: the role of adipocytokines and PPARγ. Biomed Pharmacother 105, 1091–1097.

    Article  CAS  PubMed  Google Scholar 

  • Ardid-Ruiz, A., Ibars, M., Mena, P., Del Rio, D., Muguerza, B., Bladé, C., Arola, L., Aragonès, G., and Suárez, M. (2018). Potential involvement of peripheral leptin/STAT3 signaling in the effects of resveratrol and its metabolites on reducing body fat accumulation. Nutrients 10, 1757.

    Article  PubMed Central  CAS  Google Scholar 

  • Awada, M., Soulage, C.O., Meynier, A., Debard, C., Plaisancié, P., Benoit, B., Picard, G., Loizon, E., Chauvin, M.A., Estienne, M., et al. (2012). Dietary oxidized n-3 PUFA induce oxidative stress and inflammation: role of intestinal absorption of 4-HHE and reactivity in intestinal cells. J Lipid Res 53, 2069–2080.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bak, E.J., Kim, J., Jang, S., Woo, G.H., Yoon, H.G., Yoo, Y.J., and Cha, J. H. (2013). Gallic acid improves glucose tolerance and triglyceride concentration in diet-induced obesity mice. Scand J Clin Lab Invest 73, 607–614.

    Article  CAS  PubMed  Google Scholar 

  • Bai, M., Liu, H., Xu, K., Zhang, X., Deng, B., Tan, C., Deng, J., and Yin, Y. (2019). Compensation effects of coated cysteamine on meat quality, amino acid composition, fatty acid composition, mineral content in dorsal muscle and serum biochemical indices in finishing pigs offered reduced trace minerals diet. Sci China Life Sci, doi: https://doi.org/10.1007/s11427-018-9399-4.

    Article  PubMed  Google Scholar 

  • Bose, M., Lambert, J.D., Ju, J., Reuhl, K.R., Shapses, S.A., and Yang, C.S. (2008). The major green tea polyphenol, (−)-epigallocatechin-3-gallate, inhibits obesity, metabolic syndrome, and fatty liver disease in high-fat-fed mice. J Nutr 138, 1677–1683.

    Article  CAS  PubMed  Google Scholar 

  • Chattopadhyay, M., Khemka, V.K., Chatterjee, G., Ganguly, A., Mukhopadhyay, S., and Chakrabarti, S. (2015). Enhanced ROS production and oxidative damage in subcutaneous white adipose tissue mitochondria in obese and type 2 diabetes subjects. Mol Cell Biochem 399, 95–103.

    Article  CAS  PubMed  Google Scholar 

  • Chaudhuri, J., Bains, Y., Guha, S., Kahn, A., Hall, D., Bose, N., Gugliucci, A., and Kapahi, P. (2018). The role of advanced glycation end products in aging and metabolic diseases: bridging association and causality. Cell Metab 28, 337–352.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Corrêa, M.G., Absy, S., Tenenbaum, H., Ribeiro, F.V., Cirano, F.R., Casati, M.Z., and Pimentel, S.P. (2019). Resveratrol attenuates oxidative stress during experimental periodontitis in rats exposed to cigarette smoke inhalation. J Periodont Res 54, 225–232.

    Article  CAS  Google Scholar 

  • Cortassa, S., Sollott, S.J., and Aon, M.A. (2017). Mitochondrial respiration and ROS emission during β-oxidation in the heart: an experimental-computational study. PLoS Comput Biol 13, e1005588.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Crescenzo, R., Bianco, F., Mazzoli, A., Giacco, A., Liverini, G., and Iossa, S. (2016). A possible link between hepatic mitochondrial dysfunction and diet-induced insulin resistance. Eur J Nutr 55, 1–6.

    Article  CAS  PubMed  Google Scholar 

  • Gustafson, B., and Smith, U. (2015). Regulation of white adipogenesis and its relation to ectopic fat accumulation and cardiovascular risk. Atherosclerosis 241, 27–35.

    Article  CAS  PubMed  Google Scholar 

  • Czarny, P., Wigner, P., Galecki, P., and Sliwinski, T. (2018). The interplay between inflammation, oxidative stress, DNA damage, DNA repair and mitochondrial dysfunction in depression. Prog Neuropsychopharmacol Biol Psych 80, 309–321.

    Article  CAS  Google Scholar 

  • Das, L., and Vinayak, M. (2015). Long term effect of curcumin in restoration of tumour suppressor p53 and phase-II antioxidant enzymes via activation of Nrf2 signalling and modulation of inflammation in prevention of cancer. PLoS ONE 10, e0124000.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Feng, R.B., Wang, Y., He, C., Yang, Y., and Wan, J.B. (2018). Gallic acid, a natural polyphenol, protects against tert-butyl hydroperoxide-induced hepatotoxicity by activating ERK-Nrf2-Keap1-mediated antioxidative response. Food Chem Toxicol 119, 479–488.

    Article  CAS  PubMed  Google Scholar 

  • Folbergrová, J., Ješina, P., Kubová, H., and Otáhal, J. (2018). Effect of resveratrol on oxidative stress and mitochondrial dysfunction in immature brain during epileptogenesis. Mol Neurobiol 55, 7512–7522.

    Article  PubMed  CAS  Google Scholar 

  • Gandhi, G.R., Jothi, G., Antony, P.J., Balakrishna, K., Paulraj, M.G., Ignacimuthu, S., Stalin, A., and Al-Dhabi, N.A. (2014). Gallic acid attenuates high-fat diet fed-streptozotocin-induced insulin resistance via partial agonism of PPARγ in experimental type 2 diabetic rats and enhances glucose uptake through translocation and activation of GLUT4 in PI3K/p-Akt signaling pathway. Eur J Pharmacol 745, 201–216.

    Article  CAS  PubMed  Google Scholar 

  • González de Vega, R., García, M., Fernández-Sánchez, M.L., González-Iglesias, H., and Sanz-Medel, A. (2018). Protective effect of selenium supplementation following oxidative stress mediated by glucose on retinal pigment epithelium. Metallomics 10, 83–92.

    Article  PubMed  Google Scholar 

  • Goszcz, K., Deakin, S.J., Duthie, G.G., Stewart, D., and Megson, I.L. (2017). Bioavailable concentrations of delphinidin and its metabolite, gallic acid, induce antioxidant protection associated with increased intracellular glutathione in cultured endothelial cells. Oxid Med Cell Longev 2017(4), 1–17.

    Article  CAS  Google Scholar 

  • Gu, M., Liu, C., Wan, X., Yang, T., Chen, Y., Zhou, J., Chen, Q., and Wang, Z. (2018). Epigallocatechin gallate attenuates bladder dysfunction via suppression of oxidative stress in a rat model of partial bladder outlet obstruction. Oxid Med Cell Longev 2018, 1–10.

    Google Scholar 

  • Hadrich, F., Mahmoudi, A., Bouallagui, Z., Feki, I., Isoda, H., Feve, B., and Sayadi, S. (2016). Evaluation of hypocholesterolemic effect of oleuropein in cholesterol-fed rats. Chem Biol Interact 252, 54–60.

    Article  CAS  PubMed  Google Scholar 

  • Hauck, A.K., and Bernlohr, D.A. (2016). Oxidative stress and lipotoxicity. J Lipid Res 57, 1976–1986.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • He, W., Wang, C., Chen, Y., He, Y., and Cai, Z. (2017). Berberine attenuates cognitive impairment and ameliorates tau hyperphosphorylation by limiting the self-perpetuating pathogenic cycle between NF-kB signaling, oxidative stress and neuroinflammation. Pharmacol Rep 69, 1341–1348.

    Article  CAS  PubMed  Google Scholar 

  • Holvoet, P., Vanhaverbeke, M., Geeraert, B., De Keyzer, D., Hulsmans, M., and Janssens, S. (2017). Low cytochrome oxidase 1 links mitochondrial dysfunction to atherosclerosis in mice and pigs. PLoS ONE 12, e0170307.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Hu, M., Wu, F., Luo, J., Gong, J., Fang, K., Yang, X., Li, J., Chen, G., and Lu, F. (2018). The role of berberine in the prevention of HIF-1α activation to alleviate adipose tissue fibrosis in high-fat-diet-induced obese mice. Evid Based Compl Alternat Med 2018(7603), 1–12.

    Google Scholar 

  • Jin, Y., Liu, S., Ma, Q., Xiao, D., and Chen, L. (2017). Berberine enhances the AMPK activation and autophagy and mitigates high glucose-induced apoptosis of mouse podocytes. Eur J Pharmacol 794, 106–114.

    Article  CAS  PubMed  Google Scholar 

  • Khaleel, E.F., Abdel-Aleem, G.A., and Mostafa, D.G. (2018). Resveratrol improves high-fat diet induced fatty liver and insulin resistance by concomitantly inhibiting proteolytic cleavage of sterol regulatory element-binding proteins, free fatty acid oxidation, and intestinal triglyceride absorption. Can J Physiol Pharmacol 96, 145–157.

    Article  CAS  PubMed  Google Scholar 

  • Kim, B.H., Lee, E.S., Choi, R., Nawaboot, J., Lee, M.Y., Lee, E.Y., Kim, H. S., and Chung, C.H. (2016). Protective effects of curcumin on renal oxidative stress and lipid metabolism in a rat model of type 2 diabetic nephropathy. Yonsei Med J 57, 664.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kim, S., Jin, Y., Choi, Y., and Park, T. (2011). Resveratrol exerts anti-obesity effects via mechanisms involving down-regulation of adipogenic and inflammatory processes in mice. Biochem Pharmacol 81, 1343–1351.

    Article  CAS  PubMed  Google Scholar 

  • Kovac, S., Angelova, P.R., Holmström, K.M., Zhang, Y., Dinkova-Kostova, A.T., and Abramov, A.Y. (2015). Nrf2 regulates ROS production by mitochondria and NADPH oxidase. Biochim Biophys Acta Gen Subj 1850, 794–801.

    Article  CAS  Google Scholar 

  • Leamy, A.K., Egnatchik, R.A., and Young, J.D. (2013). Molecular mechanisms and the role of saturated fatty acids in the progression of non-alcoholic fatty liver disease. Prog Lipid Res 52, 165–174.

    Article  CAS  PubMed  Google Scholar 

  • Li, F., Gao, C., Yan, P., Zhang, M., Wang, Y., Hu, Y., Wu, X., Wang, X., and Sheng, J. (2018). EGCG reduces obesity and white adipose tissue gain partly through AMPK activation in mice. Front Pharmacol 9.

  • Li, J., Tan, B., Tang, Y., Liao, P., Yao, K., Ji, P., and Yin, Y. (2018). Extraction and identification of the chyme proteins in the digestive tract of growing pigs. Sci China Life Sci 61, 1396–1406.

    Article  CAS  PubMed  Google Scholar 

  • Liao, W., Yin, X., Li, Q., Zhang, H., Liu, Z., Zheng, X., Zheng, L., and Feng, X. (2018). Resveratrol-induced white adipose tissue browning in obese mice by remodeling fecal microbiota. Molecules 23, 3356.

    Article  PubMed Central  CAS  Google Scholar 

  • Lv, D., Xiong, X., Yang, H., Wang, M., He, Y., Liu, Y., and Yin, Y. (2018). Effect of dietary soy oil, glucose, and glutamine on growth performance, amino acid profile, blood profile, immunity, and antioxidant capacity in weaned piglets. Sci China Life Sci 61, 1233–1242.

    Article  CAS  PubMed  Google Scholar 

  • Mahmoud, A.M., Abdel-Rahman, M.M., Bastawy, N.A., and Eissa, H.M. (2017). Modulatory effect of berberine on adipose tissue PPARγ, adipocytokines and oxidative stress in high fat diet/streptozotocin-induced diabetic rats. J Appl Pharm Sci 7, 001–010.

    Google Scholar 

  • Malliou, F., Andreadou, I., Gonzalez, F.J., Lazou, A., Xepapadaki, E., Vallianou, I., Lambrinidis, G., Mikros, E., Marselos, M., Skaltsounis, A. L., et al. (2018). The olive constituent oleuropein, as a PPARα agonist, markedly reduces serum triglycerides. J Nutr Biochem 59, 17–28.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Maritim, A.C., Sanders, R.A., and Watkins, J.B. (2003). Diabetes, oxidative stress, and antioxidants: a review. J Biochem Mol Toxicol 17, 24–38.

    Article  CAS  PubMed  Google Scholar 

  • Maulucci, G., Daniel, B., Cohen, O., Avrahami, Y., and Sasson, S. (2016). Hormetic and regulatory effects of lipid peroxidation mediators in pancreatic beta cells. Mol Aspects Med 49, 49–77.

    Article  CAS  PubMed  Google Scholar 

  • Mi, Y., Qi, G., Fan, R., Qiao, Q., Sun, Y., Gao, Y., and Liu, X. (2017). EGCG ameliorates high-fat- and high-fructose-induced cognitive defects by regulating the IRS/AKT and ERK/CREB/BDNF signaling pathways in the CNS. FASEB J 31, 4998–5011.

    Article  CAS  PubMed  Google Scholar 

  • Murphy, M.P. (2009). How mitochondria produce reactive oxygen species. Biochem J 417, 1–13.

    Article  CAS  PubMed  Google Scholar 

  • Paltoglou, G., Schoina, M., Valsamakis, G., Salakos, N., Avloniti, A., Chatzinikolaou, A., Margeli, A., Skevaki, C., Papagianni, M., Kanaka-Gantenbein, C., et al. (2017). Interrelations among the adipocytokines leptin and adiponectin, oxidative stress and aseptic inflammation markers in pre- and early-pubertal normal-weight and obese boys. Endocrine 55, 925–933.

    Article  CAS  PubMed  Google Scholar 

  • Panahi, G., Pasalar, P., Zare, M., Rizzuto, R., and Meshkani, R. (2018). High glucose induces inflammatory responses in HepG2 cells via the oxidative stress-mediated activation of NF-κB, and MAPK pathways in HepG2 cells. Arch Physiol Biochem 124, 468–474.

    Article  CAS  PubMed  Google Scholar 

  • Park, J., Min, J.S., Kim, B., Chae, U.B., Yun, J.W., Choi, M.S., Kong, I.K., Chang, K.T., and Lee, D.S. (2015). Mitochondrial ROS govern the LPS-induced pro-inflammatory response in microglia cells by regulating MAPK and NF-kB pathways. Neurosci Lett 584, 191–196.

    Article  CAS  PubMed  Google Scholar 

  • Patel, S., and Santani, D. (2009). Role of NF-kB in the pathogenesis of diabetes and its associated complications. Pharmacol Rep 61, 595–603.

    Article  CAS  PubMed  Google Scholar 

  • Peverill, W., Powell, L.W., and Skoien, R. (2014). Evolving concepts in the pathogenesis of NASH: beyond steatosis and inflammation. Int J Mol Sci 15, 8591–8638.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sadeghi, A., Seyyed Ebrahimi, S.S., Golestani, A., and Meshkani, R. (2017). Resveratrol ameliorates palmitate-induced inflammation in skeletal muscle cells by attenuating oxidative stress and JNK/NF-κB pathway in a SIRT1-independent mechanism. J Cell Biochem 118, 2654–2663.

    Article  CAS  PubMed  Google Scholar 

  • Sahin, K., Orhan, C., Akdemir, F., Tuzcu, M., Sahin, N., Yılmaz, I., and Juturu, V. (2017). β-cryptoxanthin ameliorates metabolic risk factors by regulating NF-κB and Nrf2 pathways in insulin resistance induced by high-fat diet in rodents. Food Chem Toxicol 107, 270–279.

    Article  CAS  PubMed  Google Scholar 

  • Sampath, C., Rashid, M.R., Sang, S., and Ahmedna, M. (2017). Green tea epigallocatechin 3-gallate alleviates hyperglycemia and reduces advanced glycation end products via nrf2 pathway in mice with high fat diet-induced obesity. Biomed Pharmacother 87, 73–81.

    Article  CAS  PubMed  Google Scholar 

  • Septembre-Malaterre, A., Le Sage, F., Hatia, S., Catan, A., Janci, L., and Gonthier, M.P. (2016). Curcuma longa polyphenols improve insulinmediated lipid accumulation and attenuate proinflammatory response of 3T3-L1 adipose cells during oxidative stress through regulation of key adipokines and antioxidant enzymes. Biofactors 42, 418–430.

    Article  CAS  PubMed  Google Scholar 

  • Setayesh, T., Nersesyan, A., Mišík, M., Noorizadeh, R., Haslinger, E., Javaheri, T., Lang, E., Grusch, M., Huber, W., Haslberger, A., et al. (2018). Gallic acid, a common dietary phenolic protects against high fat diet induced DNA damage. Eur J Nutr 4.

  • Shi, C., Chen, X., Liu, Z., Meng, R., Zhao, X., Liu, Z., and Guo, N. (2017). Oleuropein protects L-02 cells against H2O2-induced oxidative stress by increasing SOD1, GPx1 and CAT expression. Biomed Pharmacother 85, 740–748.

    Article  CAS  PubMed  Google Scholar 

  • Slocum, S.L., Skoko, J.J., Wakabayashi, N., Aja, S., Yamamoto, M., Kensler, T.W., and Chartoumpekis, D.V. (2016). Keap1/Nrf2 pathway activation leads to a repressed hepatic gluconeogenic and lipogenic program in mice on a high-fat diet. Arch Biochem Biophys 591, 57–65.

    Article  CAS  PubMed  Google Scholar 

  • Smith, U. (2015). Abdominal obesity: a marker of ectopic fat accumulation. J Clin Invest 125, 1790–1792.

    Article  PubMed  PubMed Central  Google Scholar 

  • Sun, R., Yang, N., Kong, B., Cao, B., Feng, D., Yu, X., Ge, C., Huang, J., Shen, J., Wang, P., et al. (2017). Orally administered berberine modulates hepatic lipid metabolism by altering microbial bile acid metabolism and the intestinal FXR signaling pathway. Mol Pharmacol 91, 110–122.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sun, W., Wang, X., Hou, C., Yang, L., Li, H., Guo, J., Huo, C., Wang, M., Miao, Y., Liu, J., et al. (2017). Oleuropein improves mitochondrial function to attenuate oxidative stress by activating the Nrf2 pathway in the hypothalamic paraventricular nucleus of spontaneously hypertensive rats. Neuropharmacology 113, 556–566.

    Article  CAS  PubMed  Google Scholar 

  • Tanaka, M., Kishimoto, Y., Sasaki, M., Sato, A., Kamiya, T., Kondo, K., and Iida, K. (2018). Terminalia bellirica (Gaertn.) Roxb. extract and gallic acid attenuate LPS-induced inflammation and oxidative stress via MAPK/NF-κB and Akt/AMPK/Nrf2 pathways. Oxid Med Cell Longev 2018(2), 1–15.

    Google Scholar 

  • Tien, T., Zhang, J., Muto, T., Kim, D., Sarthy, V.P., and Roy, S. (2017). High glucose induces mitochondrial dysfunction in retinal Müller cells: implications for diabetic retinopathy. Invest Ophthalmol Vis Sci 58, 2915.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Valenzuela, R., Illesca, P., Echeverría, F., Espinosa, A., Rincón-Cervera, M. Á., Ortiz, M., Hernandez-Rodas, M.C., Valenzuela, A., and Videla, L.A. (2017). Molecular adaptations underlying the beneficial effects of hydroxytyrosol in the pathogenic alterations induced by a high-fat diet in mouse liver: PPAR-α and Nrf2 activation, and NF-κB down-regulation. Food Funct 8, 1526–1537.

    Article  CAS  PubMed  Google Scholar 

  • Wadhwa, R., Gupta, R., and Maurya, P.K. (2019). Oxidative stress and accelerated aging in neurodegenerative and neuropsychiatric disorder. Curr Pharm Des 24, 4711–4725.

    Article  CAS  Google Scholar 

  • Wang, L., Ye, X., Hua, Y., and Song, Y. (2018). Berberine alleviates adipose tissue fibrosis by inducing AMP-activated kinase signaling in high-fat diet-induced obese mice. Biomed Pharmacother 105, 121–129.

    Article  CAS  PubMed  Google Scholar 

  • Wang, S., Liang, X., Yang, Q., Fu, X., Zhu, M., Rodgers, B.D., Jiang, Q., Dodson, M.V., and Du, M. (2017). Resveratrol enhances brown adipocyte formation and function by activating AMP-activated protein kinase (AMPK) α1 in mice fed high-fat diet. Mol Nutr Food Res 61, 1600746.

    Article  CAS  Google Scholar 

  • Wang, T., Xiang, Z., Wang, Y., Li, X., Fang, C., Song, S., Li, C., Yu, H., Wang, H., Yan, L., et al. (2017). (−)-Epigallocatechin gallate targets notch to attenuate the inflammatory response in the immediate early stage in human macrophages. Front Immunol 8.

  • Wang, S.L., Li, Y., Wen, Y., Chen, Y.F., Na, L.X., Li, S.T., and Sun, C.H. (2009). Curcumin, a potential inhibitor of up-regulation of TNF-alpha and IL-6 induced by palmitate in 3T3-L1 adipocytes through NF-kB and JNK pathway. Biomed Environ Sci 22, 32–39.

    Article  PubMed  Google Scholar 

  • Willems, P.H.G.M., Rossignol, R., Dieteren, C.E.J., Murphy, M.P., and Koopman, W.J.H. (2015). Redox homeostasis and mitochondrial dynamics. Cell Metab 22, 207–218.

    Article  CAS  PubMed  Google Scholar 

  • Xia, X., Yan, J., Shen, Y., Tang, K., Yin, J., Zhang, Y., Yang, D., Liang, H., Ye, J., and Weng, J. (2011). Berberine improves glucose metabolism in diabetic rats by inhibition of hepatic gluconeogenesis. PLoS ONE 6, e16556.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yao, Y.F., Liu, X., Li, W.J., Shi, Z.W., Yan, Y.X., Wang, L.F., Chen, M., and Xie, M.Y. (2017). (−)-Epigallocatechin-3-gallate alleviates doxorubicin-induced cardiotoxicity in sarcoma 180 tumor-bearing mice. Life Sci 180, 151–159.

    Article  CAS  PubMed  Google Scholar 

  • Yu, H.T., Fu, X.Y., Liang, B., Wang, S., Liu, J.K., Wang, S.R., and Feng, Z. H. (2018). Oxidative damage of mitochondrial respiratory chain in different organs of a rat model of diet-induced obesity. Eur J Nutr 57, 1957–1967.

    Article  CAS  PubMed  Google Scholar 

  • Zingg, J.M., Hasan, S.T., Nakagawa, K., Canepa, E., Ricciarelli, R., Villacorta, L., Azzi, A., and Meydani, M. (2017). Modulation of cAMP levels by high-fat diet and curcumin and regulatory effects on CD36/FAT scavenger receptor/fatty acids transporter gene expression. Biofactors 43, 42–53.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Key Research and Development Program (2016YFD0501204, 2018YFD0500405), the Youth Innovation Promotion Association CAS (2016326), the Science and Technology Projects of Hunan Province (2016SK3022, 2017RS3058), Key Project of Research and Development Plan of Hunan Province (2016NK2170), Science and Technology Projects of Changsha City (kq1801059), Youth Innovation Team Project of ISA, CAS (2017QNCXTD_ZCS), the Key Research Program of the Chinese Academy of Sciences (KFZD-SW-219), and the Earmarked Fund for China Agriculture Research System (CARS-35).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Fengna Li or Yulong Yin.

Ethics declarations

Compliance and ethics The author(s) declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guo, Q., Li, F., Duan, Y. et al. Oxidative stress, nutritional antioxidants and beyond. Sci. China Life Sci. 63, 866–874 (2020). https://doi.org/10.1007/s11427-019-9591-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11427-019-9591-5

Keywords

Navigation