Skip to main content
Log in

Dynamic modifications of biomacromolecules: mechanism and chemical interventions

  • Review
  • Published:
Science China Life Sciences Aims and scope Submit manuscript

Abstract

Biological macromolecules (proteins, nucleic acids, polysaccharides, etc.) are the building blocks of life, which constantly undergo chemical modifications that are often reversible and spatial-temporally regulated. These dynamic properties of chemical modifications play fundamental roles in physiological processes as well as pathological changes of living systems. The Major Research Project (MRP) funded by the National Natural Science Foundation of China (NSFC)—“Dynamic modifications of biomacromolecules: mechanism and chemical interventions” aims to integrate cross-disciplinary approaches at the interface of chemistry, life sciences, medicine, mathematics, material science and information science with the following goals: (i) developing specific labeling techniques and detection methods for dynamic chemical modifications of biomacromolecules, (ii) analyzing the molecular mechanisms and functional relationships of dynamic chemical modifications of biomacromolecules, and (iii) exploring biomacromolecules and small molecule probes as potential drug targets and lead compounds.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aguzzi, A., and Altmeyer, M. (2016). Phase separation: linking cellular compartmentalization to disease. Trends Cell Biol 26, 547–558.

    Article  CAS  PubMed  Google Scholar 

  • Ai, H., Guo, Y., Sun, D., Liu, S., Qi, Y., Guo, J., Qu, Q., Gong, Q., Zhao, S., Li, J., et al. (2019). Examination of the deubiquitylation site selectivity of USP51 by using chemically synthesized ubiquitylated histones. Chembiochem 20, 221–229.

    Article  CAS  PubMed  Google Scholar 

  • Arrowsmith, C.H., Audia, J.E., Austin, C., Baell, J., Bennett, J., Blagg, J., Bountra, C., Brennan, P.E., Brown, P.J., Bunnage, M.E., et al. (2015). The promise and peril of chemical probes. Nat Chem Biol 11, 536–541.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bandeira, N., Tsur, D., Frank, A., and Pevzner, P.A. (2007). Protein identification by spectral networks analysis. Proc Natl Acad Sci USA 104, 6140–6145.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Black, J.C., Van Rechem, C., and Whetstine, J.R. (2012). Histone lysine methylation dynamics: establishment, regulation, and biological impact. Mol Cell 48, 491–507.

    Article  CAS  PubMed  Google Scholar 

  • Bode, A.M., and Dong, Z. (2004). Post-translational modification of p53 in tumorigenesis. Nat Rev Cancer 4, 793–805.

    Article  CAS  PubMed  Google Scholar 

  • Bunnage, M.E., Chekler, E.L.P., and Jones, L.H. (2013). Target validation using chemical probes. Nat Chem Biol 9, 195–199.

    Article  CAS  PubMed  Google Scholar 

  • Bunnage, M.E., Gilbert, A.M., Jones, L.H., and Hett, E.C. (2015). Know your target, know your molecule. Nat Chem Biol 11, 368–372.

    Article  CAS  PubMed  Google Scholar 

  • Casey, P.J. (1995). Protein lipidation in cell signaling. Science 268, 221–225.

    Article  CAS  PubMed  Google Scholar 

  • Cedar, H., and Bergman, Y. (2009). Linking DNA methylation and histone modification: patterns and paradigms. Nat Rev Genet 10, 295–304.

    Article  CAS  PubMed  Google Scholar 

  • Chatterjee, J., and Köhn, M. (2013). Targeting the untargetable: recent advances in the selective chemical modulation of protein phosphatase-1 activity. Curr Opin Chem Biol 17, 361–368.

    Article  CAS  PubMed  Google Scholar 

  • Chu, G.C., Pan, M., Li, J., Liu, S., Zuo, C., Tong, Z.B., Bai, J.S., Gong, Q., Ai, H., Fan, J., et al. (2019). Cysteine-aminoethylation-assisted chemical ubiquitination of recombinant histones. J Am Chem Soc 141, 3654–3663.

    Article  CAS  PubMed  Google Scholar 

  • Cohen, P. (2002). The origins of protein phosphorylation. Nat Cell Biol 4, E127–E130.

    Article  CAS  PubMed  Google Scholar 

  • Cong, L., Ran, F.A., Cox, D., Lin, S., Barretto, R., Habib, N., Hsu, P.D., Wu, X., Jiang, W., Marraffini, L.A., et al. (2013). Multiplex genome engineering using CRISPR/Cas systems. Science 339, 819–823.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Crick, F. (1970). Central dogma of molecular biology. Nature 227, 561–563.

    Article  CAS  PubMed  Google Scholar 

  • Davis, B.G. (2004). Mimicking posttranslational modifications of proteins. Science 303, 480–482.

    Article  CAS  PubMed  Google Scholar 

  • Dawson, M.A., Kouzarides, T., and Huntly, B.J.P. (2012). Targeting epigenetic readers in cancer. N Engl J Med 367, 647–657.

    Article  CAS  PubMed  Google Scholar 

  • Goldberg, A.D., Allis, C.D., and Bernstein, E. (2001). Epigenetics: a landscape takes shape. Cell 128, 635–638.

    Article  CAS  Google Scholar 

  • Goll, M.G., and Bestor, T.H. (2005). Eukaryotic cytosine methyl transferases. Annu Rev Biochem 74, 481–514.

    Article  CAS  PubMed  Google Scholar 

  • Greer, P.L., Hanayama, R., Bloodgood, B.L., Mardinly, A.R., Lipton, D.M., Flavell, S.W., Kim, T.K., Griffith, E.C., Waldon, Z., Maehr, R., et al. (2010). The Angelman syndrome protein Ube3A regulates synapse development by ubiquitinating Arc. Cell 140, 704–716.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gregorich, Z.R., and Ge, Y. (2014). Top-down proteomics in health and disease: challenges and opportunities. Proteomics 14, 1195–1210.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hang, H.C., and Linder, M.E. (2011). Exploring protein lipidation with chemical biology. Chem Rev 111, 6341–6358.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Heim, C., and Binder, E.B. (2012). Current research trends in early life stress and depression: review of human studies on sensitive periods, gene-environment interactions, and epigenetics. Exp Neurol 233, 102–111.

    Article  PubMed  Google Scholar 

  • Holoch, D., and Moazed, D. (2015). RNA-mediated epigenetic regulation of gene expression. Nat Rev Genet 16, 71–84.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ibraheem, A., and Campbell, R.E. (2010). Designs and applications of fluorescent protein-based biosensors. Curr Opin Chem Biol 14, 30–36.

    Article  CAS  PubMed  Google Scholar 

  • Janke, C., and Chloë Bulinski, J. (2011). Post-translational regulation of the microtubule cytoskeleton: mechanisms and functions. Nat Rev Mol Cell Biol 12, 773–786.

    Article  CAS  PubMed  Google Scholar 

  • Jones, P.A. (2002). DNA methylation and cancer. Oncogene 21, 5358–5360.

    Article  CAS  PubMed  Google Scholar 

  • Kochendoerfer, G.G., and Kent, S.B. (1999). Chemical protein synthesis. Curr Opin Chem Biol 3, 665–671.

    Article  CAS  PubMed  Google Scholar 

  • Li, J., and Chen, P.R. (2016). Development and application of bond cleavage reactions in bioorthogonal chemistry. Nat Chem Biol 12, 129–137.

    Article  CAS  PubMed  Google Scholar 

  • Li, J., Kong, H., Huang, L., Cheng, B., Qin, K., Zheng, M., Yan, Z., and Zhang, Y. (2018). Visible light-initiated bioorthogonal photoclick cycloaddition. J Am Chem Soc 140, 14542–14546.

    Article  CAS  PubMed  Google Scholar 

  • Lin, W., Gao, L., and Chen, X. (2015). Protein-specific imaging of posttranslational modifications. Curr Opin Chem Biol 28, 156–163.

    Article  CAS  PubMed  Google Scholar 

  • Luo, G.Z., Blanco, M.A., Greer, E.L., He, C., and Shi, Y. (2015). DNA N6-methyladenine: a new epigenetic mark in eukaryotes? Nat Rev Mol Cell Biol 16, 705–710.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Maddika, S., and Chen, J. (2009). Protein kinase DYRK2 is a scaffold that facilitates assembly of an E3 ligase. Nat Cell Biol 11, 409–419.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Magi, B., Bargagli, E., Bini, L., and Rottoli, P. (2006). Proteome analysis of bronchoalveolar lavage in lung diseases. Proteomics 6, 6354–6369.

    Article  CAS  PubMed  Google Scholar 

  • Mann, M., and Jensen, O.N. (2003). Proteomic analysis of post-translational modifications. Nat Biotechnol 21, 255–261.

    Article  CAS  PubMed  Google Scholar 

  • Moremen, K.W., Tiemeyer, M., and Nairn, A.V. (2012). Vertebrate protein glycosylation: diversity, synthesis and function. Nat Rev Mol Cell Biol 13, 448–462.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ohtsubo, K., and Marth, J.D. (2006). Glycosylation in cellular mechanisms of health and disease. Cell 126, 855–867.

    Article  CAS  PubMed  Google Scholar 

  • Ooi, S.K.T., and Bestor, T.H. (2008). The colorful history of active DNA demethylation. Cell 133, 1145–1148.

    Article  CAS  PubMed  Google Scholar 

  • Pan, M., Zheng, Q., Ding, S., Zhang, L., Qu, Q., Wang, T., Hong, D., Ren, Y., Liang, L., Chen, C., et al. (2019). Chemical protein synthesis enabled mechanistic studies on the molecular recognition of K21-linked ubiquitin chains. Angew Chem Int Ed 58, 2627–2631.

    Article  CAS  Google Scholar 

  • Pettitt, J., Zeitlin, L., Kim, D.H., Working, C., Johnson, J.C., Bohorov, O., Bratcher, B., Hiatt, E., Hume, S.D., Johnson, A.K., et al. (2013). Therapeutic intervention of Ebola virus infection in rhesus macaques with the MB-003 monoclonal antibody cocktail. Sci Transl Med 5, 199ra113.

    Article  PubMed  Google Scholar 

  • Prabakaran, S., Lippens, G., Steen, H., and Gunawardena, J. (2012). Post-translational modification: nature’s escape from genetic imprisonment and the basis for dynamic information encoding. Wiley Interdiscip Rev Syst Biol Med 4, 565–583.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Radivojac, P., Vacic, V., Haynes, C., Cocklin, R.R., Mohan, A., Heyen, J. W., Goebl, M.G., and Iakoucheva, L.M. (2010). Identification, analysis, and prediction of protein ubiquitination sites. Proteins 78, 365–380.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ramil, C.P., and Lin, Q. (2014). Photoclick chemistry: a fluorogenic light-triggered in vivo ligation reaction. Curr Opin Chem Biol 21, 89–95.

    Article  CAS  PubMed  Google Scholar 

  • Rix, U., and Superti-Furga, G. (2008). Target profiling of small molecules by chemical proteomics. Nat Chem Biol 5, 616–624.

    Article  CAS  Google Scholar 

  • Ross, C.A., and Poirier, M.A. (2004). Protein aggregation and neurodegenerative disease. Nat Med 10, S10–S17.

    Article  PubMed  CAS  Google Scholar 

  • Roundtree, I.A., and He, C. (2016). Nuclear m6A reader YTHDC1 regulates mRNA splicing. Trends Genet 32, 320–321.

    Article  CAS  PubMed  Google Scholar 

  • Rubin, C.S., and Rosen, O.M. (1975). Protein phosphorylation. Annu Rev Biochem 44, 831–887.

    Article  CAS  PubMed  Google Scholar 

  • Schenone, M., Dančik, V., Wagner, B.K., and Clemons, P.A. (2013). Target identification and mechanism of action in chemical biology and drug discovery. Nat Chem Biol 9, 232–240.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Snider, N.T., and Omary, M.B. (2014). Post-translational modifications of intermediate filament proteins: mechanisms and functions. Nat Rev Mol Cell Biol 15, 163–177.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Taira, N., Nihira, K., Yamaguchi, T., Miki, Y., and Yoshida, K. (2007). DYRK2 is targeted to the nucleus and controls p53 via Ser46 phosphorylation in the apoptotic response to DNA damage. Mol Cell 25, 725–738.

    Article  CAS  PubMed  Google Scholar 

  • Walsh, C.T., Garneau-Tsodikova, S., and Gatto, G.J. (2005). Protein posttranslational modifications: the chemistry of proteome diversifications. Angew Chem Int Ed 44, 7342–7372.

    Article  CAS  Google Scholar 

  • Wang, J., Liu, Y., Liu, Y., Zheng, S., Wang, X., Zhao, J., Yang, F., Zhang, G., Wang, C., and Chen, P.R. (2019). Time-resolved protein activation by proximal decaging in living systems. Nature 569, 509–513.

    Article  CAS  PubMed  Google Scholar 

  • Wells, L., Vosseller, K., and Hart, G.W. (2001). Glycosylation of nucleocytoplasmic proteins: signal transduction and O-GlcNAc. Science 291, 2376–2378.

    Article  CAS  PubMed  Google Scholar 

  • Wold, F. (1981). In vivo chemical modification of proteins (posttranslational modification). Annu Rev Biochem 50, 783–814.

    Article  CAS  PubMed  Google Scholar 

  • Xiao, X., Tang, J.J., Peng, C., Wang, Y., Fu, L., Qiu, Z.P., Xiong, Y., Yang, L.F., Cui, H.W., He, X.L., et al. (2011). Cholesterol modification of Smoothened is required for hedgehog signaling. Mol Cell 66, 154–162. 10.

    Article  CAS  Google Scholar 

  • Zentner, G.E., and Henikoff, S. (2013). Regulation of nucleosome dynamics by histone modifications. Nat Struct Mol Biol 20, 259–266.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Hualiang Jiang or Peng R. Chen.

Additional information

Supporting Information

Table S1 List of research projects that have been funded by the Major Research Project at NSFC

The supporting information is available online at http://life.scichina.com and https://link.springer.com. The supporting materials are published as submitted, without typesetting or editing. The responsibility for scientific accuracy and content remains entirely with the authors.

Supporting Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, C., Zou, P., Yang, C. et al. Dynamic modifications of biomacromolecules: mechanism and chemical interventions. Sci. China Life Sci. 62, 1459–1471 (2019). https://doi.org/10.1007/s11427-019-9823-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11427-019-9823-1

Keywords

Navigation