Skip to main content
Log in

Auf dem Weg zum „Closed-loop“-System

Bestandteile und Schritte

On course for a closed-loop system

Components and steps

  • Leitthema
  • Published:
Der Diabetologe Aims and scope

Zusammenfassung

Diabetestherapie bedeutet für einen Menschen mit Typ-1-Diabetes die Notwendigkeit, ein lebenslanges Management der Insulinsubstitution zu gewährleisten, beruhend auf profunden Kenntnissen zur Erkrankung, der Blutglucoseselbstmessung und der Insulindosisanpassung. Es ist deshalb ein sehnlicher Wunsch der Patienten, das Insulinmanagement zu automatisieren, was der technischen Lösung im Sinne eines artifiziellen Pankreas entspricht. Konkret gilt es, einen Kreislauf von Glucosemessung und Insulinabgabe so zu etablieren, dass sich ein geschlossenes System ergibt („Closed-loop“-System, CLS). Eine Nachahmung der physiologischen Situation ist nur eingegrenzt möglich, d. h., bei praktisch realisierbaren CLS erfolgt die Steuerung der s.c.-Insulin-Infusion über einen subkutan messenden Glucosesensor. Dies stellt eine Abweichung von der physiologischen Situation dar. Solche Abweichungen und die sich daraus ergebenden Schwierigkeiten gilt es durch geeignete Steuerungsalgorithmen zu kompensieren. Einige Voraussetzungen für CLS werden bereits heute im Alltag eingesetzt, so die Kalkulation von Insulindosen in den Pumpen sowie die Kopplung von Glucosesensor und Pumpe. Dadurch ist eine automatisierte Hypoglykämieabschaltung möglich; eine erste Stufe von CLS findet also bereits Verwendung in der täglichen Insulintherapie. Die Entwicklung bis zu vollautomatischen CLS, die als Produkte kommerziell verfügbar werden, wird über mehrere Entwicklungsstufen verlaufen. Aktuell wird eine Reihe von klinischen Studien durchgeführt, bei denen CLS die Kontrolle der Insulintherapie unter Alltagsbedingungen übernehmen; die bisherigen Ergebnisse dieser Studien sind ausgesprochen positiv.

Abstract

For a person with type 1 diabetes, the diabetes therapy means the necessity to ensure a lifelong management of insulin substitution entailing a profound knowledge of the disease, blood glucose self-monitoring and adjustment of insulin dosage. It is therefore a fervent desire of patients for insulin management to be automated and the technical solution corresponds to that of an artificial pancreas. In concrete terms this means establishment of a cycle of glucose measurement and insulin administration in a closed-loop system (CLS). Duplication of the physiological situation has only limited possibilities, i.e. a practically realizable CLS necessitates the control of subcutaneous insulin infusion via a subcutaneous glucose sensor measurement, which records deviations from the physiological situation. These deviations and the resulting difficulties must be compensated by suitable control algorithms. Some prerequisites for a CLS have already been implemented in the daily routine, such as calculation of the insulin dosage in the pumps and coupling of the glucose sensor and pump which allows and automatic shut-off in hypoglycemia. The first stage of a CLS is therefore already used in daily insulin therapy. The development to fully automated CLS and to a commercially available product will run over several developmental stages. A series of clinical studies are currently being carried out in which a CLS undertakes the control of insulin therapy under routine daily conditions and the results of these studies are so far extremely promising.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Abb. 1
Abb. 2

Literatur

  1. Vaughn DE, Yocum RC, Muchmore DB et al (2009) Accelerated pharmacokinetics and glucodynamics of prandial insulins injected with recombinant human hyaluronidase. Diabetes Technol Ther 11:345–352

    Article  CAS  PubMed  Google Scholar 

  2. Forst T, Pfützner A, Flacke F et al (2010) Postprandial vascular effects of VIAjec compared with insulin lispro and regular human insulin in patients with type 2 diabetes mellitus. Diabetes Care 33:116–120

    Article  CAS  PubMed  Google Scholar 

  3. Freckmann G, Pleus S, Westhoff A et al (2012) Clinical performance of a device that applies local heat to the insulin infusion site: a crossover study. J Diabetes Sci Technol 6:320–327

    Article  PubMed Central  PubMed  Google Scholar 

  4. Kulcu E, Tamada JA, Reach G et al (2003) Physiological differences between interstitial glucose and blood glucose measured in human subjects. Diabetes Care 26:2405–2409

    Article  CAS  PubMed  Google Scholar 

  5. Kovatschev BP, Shields D, Breton M (2009) Graphical and numerical evaluation of continuous glucose sensing time lag. Diabetes Technol Ther 11:139–143

    Article  Google Scholar 

  6. Selam JL, Raccah D, Jean-Didier N et al (1992) Randomised comparison of metabolic control achieved by intraperitoneal insulin infusion with implantable pumps versus intensive subcutaneous insulin therapy in type I diabetic patients. Diabetes Care 15:53–58

    Article  CAS  PubMed  Google Scholar 

  7. Jeandidier N, Selam JL, Renard E et al (1996) Decreased severe hypoglycaemia frequency during intraperitoneal insulin infusion using programmable implantable pumps. Evadiac Study Group. Diabetes Care 19:780–785

    CAS  PubMed  Google Scholar 

  8. Lotgenberg SJ, Kleestra N, Houweling ST et al (2009) Improved glycemic control with intraperitoneal versus subcutaneous insulin in type 1 diabetes. Diabetes Care 32:1372–1377

    Article  Google Scholar 

  9. Liebl A, Hoogma R, Renard E et al (2009) A reduction in severe hypoglycaemia in type 1 diabetes in a randomized crossover study of continuous intraperitoneal compared with subcutaneous insulin infusion. Diabetes Obes Metab 11:1001–1008

    Article  CAS  PubMed  Google Scholar 

  10. Renard E, Costalat G, Moran B et al (2001) First combined implantations of a long-term IV glucose sensor and an intra-peritoneal insulin pump in diabetic patients. Diabetes 50(Suppl 2):A3

    Google Scholar 

  11. Fogt EJ, Dodd LM, Eddy AR et al (1979) Development of artificial endocrine pancreas (closed loop system) and sensors for continuous glucose monitoring. In: Alberti KG, Hepp KD, Pfeiffer EF, Kerner W (Hrsg) Feedback-controlled and preprogrammed insulin infusion in diabetes mellitus. Thieme, Stuttgart

  12. Koivisto VA, Yki-Jarvinen H, Helve E (1986) Pathogenesis and prevention of the dawn phenomenon in diabetic patients treated with CSII. Diabetes 35:78–82

    Article  CAS  PubMed  Google Scholar 

  13. Pickup JC (2012) Insulin-pump therapy for type 1 diabetes mellitus. N Engl J Med 366:1616–1624

    Article  CAS  PubMed  Google Scholar 

  14. Lauritzen T, Pramming S, Deckert T, Binder C (1983) Pharmacokinetics of continuous subcutaneous insulin infusion. Diabetologia 24:326–329

    Article  CAS  PubMed  Google Scholar 

  15. Heinemann L (2002) Variability of insulin absorption and action. Diabetes Technol Ther 4:673–682

    Article  PubMed  Google Scholar 

  16. Heise T, Nosek L, Rønn BB et al (2004) Lower within-subject variability of insulin detemir in comparison to NPH insulin and insulin glargine in people with type 1 diabetes. Diabetes 53:1614–1620

    Article  CAS  PubMed  Google Scholar 

  17. Pickup J, Sutten AJ (2008) Severe hypoglycaemia and glycaemic control in type 1 diabetes: meta-analysis of multiple daily insulin injections compared with continuous subcutaneous insulin infusion. Diabet Med 25:765–774

    Article  CAS  PubMed  Google Scholar 

  18. Jeitler K, Horvath K, Berghold A et al (2008) Continuous subcutaneous insulin infusion versus multiple daily insulin injections in patients with diabetes mellitus: systematic review and meta-analysis. Diabetologia 51:941–951

    Article  CAS  PubMed  Google Scholar 

  19. Henrichs HR, Liebl A, Reichel A et al, für die Arbeitsgemeinschaft Diabetologische Technologie der DDG (AGDT) (2009) Experimentelle Untersuchungen und klinische Evidenz der Insulinpumpentherapie (CSII). Diabetologie 4:390–397

    Article  Google Scholar 

  20. Chase HP, Saib SZ, MacKenzie T et al (2002) Post-prandial glucose excursions following four methods of bolus insulin administration in subjects with type 1 diabetes. Diabet Med 19:317–321

    Article  CAS  PubMed  Google Scholar 

  21. Zisser H, Robinson L, Bevier W et al (2008) Bolus calculator: a review of four „smart“ insulin pumps. Diabetes Technol Ther 10:441–444

    Article  CAS  PubMed  Google Scholar 

  22. Kovatchev B, Heinemann L, Anderson S, Clarke W (2008) Comparison of the numerical and clinical accuracy of four continuous glucose monitors. Diabetes Care 31:1160–1164

    Article  CAS  PubMed  Google Scholar 

  23. Koschinsky T, Heckermann S, Heinemann L (2007) Continuous glucose monitoring allows for larger measurement errors than for SMBG: a new application of the diabetes error test model. Diabetes 56(Suppl 1):A109

    Google Scholar 

  24. Deiss D, Bolinder J, Riveline J-P et al (2006) Improved glycemic control in poorly controlled patients with type 1 diabetes using real-time continuous glucose monitoring. Diabetes Care 29:2730–2732

    Article  PubMed  Google Scholar 

  25. Hirsch IB, Abelseth J, Bode BW et al (2008) Sensor-augmented insulin pump therapy: results of the first randomized treat-to-target study. Diabetes Technol Ther 10:377–383

    Article  CAS  PubMed  Google Scholar 

  26. JDRF, Continuous Glucose Monitoring Study Group (2008) Continuous glucose monitoring and intensive treatment of type 1 diabetes. N Engl J Med 359:1464–1476

    Article  Google Scholar 

  27. Juvenile Diabetes Research Foundation Continuous Glucose Monitoring Study Group (2009) The effect of continuous glucose monitoring in well-controlled type 1 diabetes. Diabetes Care 32:1378–1383

    Article  Google Scholar 

  28. O’Connell MA, Donath S, O’Neal DN et al (2009) Glycaemic impact of patient-led use of sensor-guided pump therapy in type 1 diabetes: a randomised controlled trial. Diabetologia 52:1250–1257

    Article  Google Scholar 

  29. Raccah D, Sulmont V, Reznik Y et al (2009) Incremental value of continuous glucose monitoring when starting pump therapy in patients with poorly controlled type 1 diabetes. Diabetes Care 32:2245–2250

    Article  CAS  PubMed  Google Scholar 

  30. Hermanides J, Nørgaard K, Bruttomesso D et al (2011) Sensor augmented pump therapy lowers HbA1c in suboptimally controlled type 1 diabetes: a randomised controlled trial. Diabet Med 28:1158–1167

    Article  CAS  PubMed  Google Scholar 

  31. Bergenstal RM, Tamborlane WV, Ahmann A et al (2010) Effectiveness of sensor-augmented insulin-pump therapy in type 1 diabetes. N Engl J Med 363:311–320

    Article  CAS  PubMed  Google Scholar 

  32. Battelino T, Phillip M, Bratina N et al (2011) Effect of continuous glucose monitoring on hypoglycemia in type 1 diabetes. Diabetes Care 34:795–800

    Article  PubMed  Google Scholar 

  33. Battelino T, Conget I, Olsen B et al (2012) The use and efficacy of continuous glucose monitoring in type 1 diabetes treated with insulin pump therapy: a randomised controlled trial. Diabetologia 55:3155–3162

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  34. Pickup JC, Freeman SC, Sutton AJ (2011) Glycaemic control in type 1 diabetes during real time continuous glucose monitoring compared with self monitoring of blood glucose: meta-analysis of randomised controlled trials using individual patient data. BMJ 343:d3805. DOI 10.1136/bmj.d3805

    Article  PubMed Central  PubMed  Google Scholar 

  35. Rys P, Mucha A, Koprowski M et al (2011) Efficacy and safety of continuous glucose monitoring systems vs self-monitoring blood glucose in patients with type 1 diabetes mellitus: a systematic review and meta-analysis. Diabetologia 54(Suppl 1):S116

    Google Scholar 

  36. Floyd B, Chandra P, Hall S et al (2012) Comparative analysis of the efficacy of continuous glucose monitoring and self-monitoring of blood glucose in type 1 diabetes mellitus. J Diabetes Sci Technol 6:1094–1102

    Article  PubMed Central  PubMed  Google Scholar 

  37. Carmen U, Ludwig-Seibold CU, Holder M et al, for the DPV Science Initiative, the German Working Group for insulin pump treatment in pediatric patients and the German BMBF Competence Network Diabetes (2012) Continuous glucose monitoring in children, adolescents, and adults with type 1 diabetes mellitus: analysis from the prospective DPV diabetes documentation and quality management system from Germany and Austria. Pediatric Diabetes 13:12–14

    Article  Google Scholar 

  38. Danne T, Kordonouri O, Remus K et al (2011) Prevention of hypoglycaemia by using low glucose suspend function in sensor-augmented pump therapy. Diabetes Technol Ther 13:1129–1134

    Article  PubMed  Google Scholar 

  39. Choudhary P, Shin J, Wang Y et al (2011) Insulin pump therapy with automated insulin suspension in response to hypoglycemia: reduction in nocturnal hypoglycemia in those at greatest risk. Diabetes Care 34:2023–2025

    Article  CAS  PubMed  Google Scholar 

  40. Agrawal P, Welsh JB, Kannard B et al (2011) Usage and effectiveness of the low glucose suspend feature of the Medtronic Paradigm Veo insulin pump. J Diabetes Sci Technol 5:1137–1141

    Article  PubMed Central  PubMed  Google Scholar 

  41. Garg S, Brazg RL, Bailey TS et al (2012) Reduction in duration of hypoglycemia by automatic suspension of insulin delivery: the in-clinic ASPIRE study. Diabetes Technol Ther 14:205–209

    Article  CAS  PubMed  Google Scholar 

  42. Ly TT et al (2013) Effect of sensor-augmented insulin pump therapy and automated insulin suspension vs. standard insulin pump therapy in patients with type 1 diabetes. A randomized clinical trial. JAMA 310:1240–1247

    Article  CAS  PubMed  Google Scholar 

  43. Bergenstal RM, Klonoff DC, Garg SK et al (2013) Threshold-based insulin-pump interruption for reduction of hypoglycemia. N Engl J Med. doi:10.1056/NEJMoa1303576

  44. Buckingham B, Cobry E, Clinton P et al (2009) Preventing hypoglycemia using predictive alarm algorithms and insulin pump suspension. Diabetes Technol Ther 11:93–97

    Article  CAS  PubMed  Google Scholar 

  45. Tsioli C, Remus K, Blaesig S et al (2013) Feasibility data of the predictive low glucose management algorithm – The Pilgrim study. Diabetes 62(Suppl 1):A91

    Google Scholar 

  46. Steil GM, Rebrin K, Darwin C et al (2006) Feasibility of automating insulin delivery for the treatment of type 1 diabetes. Diabetes 55:3344–3350

    Article  CAS  PubMed  Google Scholar 

  47. Kovatchev BP, Cox DJ, Kumar A et al (2003) Algorithmic evaluation of metabolic control and risk of severe hypoglycemia in type 1 and type 2 diabetes using self-monitoring blood glucose data. Diabetes Technol Ther 5:817–828

    Article  CAS  PubMed  Google Scholar 

  48. Hovorka R, Allen JM, Elleri D et al (2010) Manual closed-loop insulin delivery in children and adolescents with type 1 diabetes: a phase 2 randomised crossover trial. Lancet 375:743–751

    Article  CAS  PubMed  Google Scholar 

  49. Atlas E, Nimri R, Miller S et al (2010) MDlogic artificial pancreas system: a pilot study in adults with type 1 diabetes. Diabetes Care 33:1072–1076

    Article  PubMed  Google Scholar 

  50. Phillip M, Battelino T, Atlas E et al (2013) Nocturnal glucose control with an artificial pancreas at a diabetes camp. N Engl J Med 368:824–833

    Article  CAS  PubMed  Google Scholar 

  51. El-Khatib FH, Russell SJ, Nathan DM et al (2010) A bihormonal closed-loop artificial pancreas for type 1 diabetes. Sci Transl Med 2:27–31

    Article  Google Scholar 

  52. O’Grady MJ, Retterath AJ, Keenan DB et al (2012) The use of an automated, portable, glucose control system for overnight glucose control in adolescents and young adults with type 1 diabetes. Diabetes Care 35:2182–2187

    Article  Google Scholar 

Download references

Einhaltung ethischer Richtlinien

Interessenkonflikt. A. Thomas ist Scientific Manager der Fa. Medtronic, Geschäftsbereich Diabetes; Hersteller und Vertreiber von Insulinpumpen und CGM-Systemen. Er ist nichtstimmberechtigtes Mitglied im Beirat der Arbeitsgemeinschaft Diabetische Technologie der Deutschen Diabetes-Gesellschaft (DDG) und Chefredakteur der Zeitschrift Diabetes und Technologie. L. Heinemann ist Berater einer Reihe von Firmen, die neue diagnostische und therapeutische Optionen für die Diabetestherapie entwickeln. Er ist 1. Vorsitzender der Arbeitsgemeinschaft Diabetische Technologie der DDG und Redakteur der Zeitschrift Diabetes und Technologie. Weiterhin ist er Managing Editor der Zeitschrift Journal of Diabetes Science & Technology. G. Freckmann ist Ärztlicher Leiter und Geschäftsführer des „Instituts für Diabetes-Technologie Forschungs- und Entwicklungsgesellschaft mbH an der Universität Ulm“ (IDT). Das IDT führt eigene wissenschaftliche Projekte sowie Studien zur Untersuchung von Medizinprodukten und Systemen zur Blutzuckermessung im Auftrag verschiedener Unternehmen durch. Freckmann/IDT erhielt Vortrags-/Beratungshonorare von den Firmen Abbott, Bayer, Menarini Diagnostics, BD, Novo Nordisk, Roche Diagnostics, Ypsomed und Sanofi. Freckmann ist 2. Vorsitzender der Arbeitsgemeinschaft Diabetische Technologie der DDG und Redakteur der Zeitschrift Diabetes und Technologie. Dieser Beitrag beinhaltet keine Studien an Menschen oder Tieren.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Thomas.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Thomas, A., Heinemann, L. & Freckmann, G. Auf dem Weg zum „Closed-loop“-System. Diabetologe 10, 48–55 (2014). https://doi.org/10.1007/s11428-013-1127-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11428-013-1127-y

Schlüsselwörter

Keywords

Navigation