Skip to main content
Log in

Trace element composition in tuite decomposed from natural apatite in high-pressure and high-temperature experiments

  • Research Paper
  • Published:
Science China Earth Sciences Aims and scope Submit manuscript

Abstract

Tuite has been suggested as a potential reservoir for trace elements in the deep mantle, but no evidence confirms this supposition. By using a natural apatite as starting material, the trace-element-bearing tuite large crystals were obtained under high-pressure and high-temperature conditions (15 GPa and 1800 K). X-ray diffraction pattern and Micro-Raman spectrum of the run product confirm that tuite was synthesized. The concentrations of trace elements in tuite crystals were analyzed by laser ablation-inductively coupled plasma-mass spectrometry (LA-ICP-MS). The rare earth element patterns of tuite show enrichment of light rare earth elements relative to heavy rare earth elements. Tuite shows high concentrations of Th and Sr, and negative anomalies of Rb, Nb, and Hf. The results show that tuite can accommodate a large amount of trace elements. Tuite might be an important host to accommodate trace elements if there is much apatite subducted into the deep mantle.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bau M, Dulski P. 1995. Comparative study of yttrium and rare-earth element behaviours in fluorine-rich hydrothermal fluids. Contrib Mineral Petrol, 119: 213–223

    Article  Google Scholar 

  • Baziotis I P, Liu Y, DeCarli P S, et al. 2013. The Tissint Martian meteorite as evidence for the largest impact excavation. Nat Commun, 4: 1404

    Article  Google Scholar 

  • Beswick A E, Carmichael I S E. 1978. Constrains on mantle source compositions imposed by phosphorous and the rare earth elements. Contrib Mineral Petrol, 67: 317–330

    Article  Google Scholar 

  • Dégi J, Abart R, Török K. 2010. Symplectite formation during decompression induced garnet breakdown in lower crustal mafic granulite xenoliths: Mechanisms and rates. Contrib Mineral Petrol, 159: 293–314

    Article  Google Scholar 

  • Dowty E. 1977. Phosphate in Angra dos Reis: Structure and composition of the Ca3(PO4)2 minerals. Earth Planet Sci Lett, 35: 347–351

    Article  Google Scholar 

  • Gaspar M, Knaack C, Meinert L D, et al. 2008. REE in sharn systems: A LA-ICP-MS study of garnets from the Crown Jewel gold deposit. Geochim Cosmochim Acta, 72: 185–205

    Article  Google Scholar 

  • Gopal R, Calvo C. 1972. Structure relationship of whitlockite and β-Ca3-(PO4)2. Nat Phys Sci, 237: 30–32

    Article  Google Scholar 

  • Grammaccioli C M, Diella V, Demartin F. 1999. The role of fluoride complexes in REE geochemistry and the importance of 4f electrons: Some examples in minerals. Eur J Mineral, 11: 983–992

    Article  Google Scholar 

  • Greshake A, Fritz J. 2009. Discovery of ringwoodite, wadsleyite, and γ-Ca3(PO4)2 in Chassigny: Constraints on shock conditions. Lunar Planet Inst Sci Conf Abs, 40: 1586

    Google Scholar 

  • Griffin W L, Åmli R, Heier K S. 1972. Whitlockite and apatite from lunar rock 14310 and from ÖdegÅrden, Norway. Earth Planet Sci Lett, 15: 53–68

    Article  Google Scholar 

  • Jackson S E, Longerich H P, Dunning G R, et al. 1992. The application of laser-ablation microprobe; inductively coupled plasma-mass spectrometry (LAM-ICP-MS) to in situ trace-element determinations in minerals. Can Mineral, 30: 1049–1064

    Google Scholar 

  • Jolliff B L, Haskin L A, Colson R O, et al. 1993. Partitioning in REE-saturating minerals: Theory, experiment, and modeling of whitlockite, apatite, and evolution of lunar residual magmas. Geochim Cosmochim Acta, 57: 4069–4094

    Article  Google Scholar 

  • Konzett J, Frost D J. 2009. The high P-T stability of hydroxyl-apatite in natural and simplified MORB—An experimental study to 15 GPa with implications for transport and storage of phosphorus and halogens in subduction zones. J Petrol, 50: 2043–2062

    Article  Google Scholar 

  • Konzett J, Rhede D, Frost D J. 2012. The high PT stability of apatite and Cl partitioning between apatite and hydrous potassic phases in peridotite: An experimental study to 19 GPa with implications for the transport of P, Cl and K in the upper mantle. Contrib Mineral Petrol, 163: 277–296

    Article  Google Scholar 

  • Manthilake M A G M, Sawada Y, Sakai S. 2008. Genesis and evolution of Eppawala carbonatites, Sri Lanka. J Asian Earth Sci, 32: 66–75

    Article  Google Scholar 

  • McDonough W F, Sun S. 1995. The composition of the Earth. Chem Geol, 120: 223–253

    Article  Google Scholar 

  • Miyahara M, Ohtani E, Ozawa S, et al. 2011. Natural dissociation of olivine to (Mg, Fe)SiO3 perovskite and magnesiowüstite in a shocked Martian meteorite. Proc Natl Acad Sci USA, 108: 5999–6003

    Article  Google Scholar 

  • Murayama J K, Nakai S, Kato M, et al. 1986. A dense polymorph of Ca3(PO4)2: A high pressure phase of apatite decomposition and its geochemical significance. Phys Earth Planet Inter, 44: 293–303

    Article  Google Scholar 

  • Nash W P. 1984. Phosphate minerals in terrestrial igneous and metamorphic rocks. In: Nriagu J O, Moore P B, eds. Phosphate Minerals. Berlin: Springer-Verlag. 215–241

    Chapter  Google Scholar 

  • Pearce N J G, Perkins W T, Westgate J A, et al. 1997. A compilation of new and published major and trace element data for NIST SRM 610 and NIST SRM 612 glass reference materials. Geostand Newsl, 21: 115–144

    Article  Google Scholar 

  • Prewitt C T, Rothbard D R. 1975. Crystal structures of meteoritic and lunar whitlockites. Lunar Planet Sci, 6: 646–648

    Google Scholar 

  • Puchelt H, Emmermann R. 1976. Bearing of rare earth patterns of apatites from igneous and metamorphic rocks. Earth Planet Sci Lett, 31: 279–286

    Article  Google Scholar 

  • Python M, Ishisa Y, Ceuleneer G, et al. 2007. Trace element heterogeneity in hydrothermal diopside: Evidence for Ti depletion and Sr-Eu-LREE enrichment during hydrothermal metamorphism of mantle harzburgite. J Mineral Petrol Sci, 102: 143–149

    Article  Google Scholar 

  • Ozawa S, Ohtani E, Suzuki A, et al. 2007. Shock metamorphism of L6 chondrites Sahara 98222 and Yamato 74445: The P-T conditions and the shock age. AGU Fall Meet Abs, 1: 1234

    Google Scholar 

  • Santosh M, Rajesh V J, Tsunogae T, et al. 2010. Diopsidites from a Neoproterozoic-Cambrian suture in southern India. Geol Mag, 147: 777–788

    Article  Google Scholar 

  • Schwinn G, Markl G. 2005. REE systematics in hydrothermal fluorite. Chem Geol, 216: 225–248

    Article  Google Scholar 

  • Sugiyama K, Tokonami M. 1987. Structure and crystal chemistry of a dense polymorph of tricalcium phosphate Ca3(PO4)2: A host to accommodate large lithophile elements in the Earth’s mantle. Phys Chem Miner, 15: 125–130

    Article  Google Scholar 

  • Van Achterberg E, Ryan C G, Jackson S, et al. 2001. Data reduction software for LA-ICP-MS. In: Sylvester P, ed. Laser-Ablation-ICPMS in the Earth Sciences: Principles and Applications. Mineralogical Society of Canada. 239–243

    Google Scholar 

  • Xie X, Chen M. 2008. Formation conditions of tuite (in Chinese). Geochimica, 37: 297–303

    Google Scholar 

  • Xie X, Minitti M E, Chen M, et al. 2002. Natural high-pressure polymorph of merrillite in the shock veins of the Suizhou meteorite. Geochim Cosmochim Acta, 66: 2439–2444

    Article  Google Scholar 

  • Xie X, Minitti M E, Chen M, et al. 2003. Tuite, γ-Ca3(PO4)2: A new mineral from the Suizhou L6 chondrite. Eur J Mineral, 15: 1001–1005

    Article  Google Scholar 

  • Zhai S, Liu X, Shieh S R, et al. 2009. Equation of state of γ-tricalcium phosphate, to lower mantle pressures. Am Mineral, 94: 1388–1391

    Article  Google Scholar 

  • Zhai S, Wu X, Ito E. 2010. High-pressure Raman spectra of tuite, γ-Ca3-(PO4)2. J Raman Spectrosc, 41: 1011–1013

    Article  Google Scholar 

  • Zhai S, Xue W, Lin C, et al. 2011. Raman spectra and X-ray diffraction of tuite at various temperatures. Phys Chem Miner, 38: 639–646

    Article  Google Scholar 

  • Zhang R Y, Liou J G, Zheng J P, et al. 2009. Petrogenesis of eclogites enclosed in mantle-derived peridotites from the Sulu UHP terrane: Constraints from trace elements in minerals and Hf isotopes in zircon. Lithos, 109: 176–192

    Article  Google Scholar 

  • Zheng J P, Zhang R Y, Griffin W L, et al. 2005. Heterogeneous and metasomatized mantle recorded by trace elements in minerals of the Donghai garnet peridotites, Sulu UHP terrane, China. Chem Geol, 221: 243–259

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to ShuangMeng Zhai.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhai, S., Xue, W., Yamazaki, D. et al. Trace element composition in tuite decomposed from natural apatite in high-pressure and high-temperature experiments. Sci. China Earth Sci. 57, 2922–2927 (2014). https://doi.org/10.1007/s11430-014-4980-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11430-014-4980-7

Keywords

Navigation