Skip to main content
Log in

Optical property of amorphous semiconductor mercury cadmium telluride from first-principles study

  • Published:
Science in China Series E: Technological Sciences Aims and scope Submit manuscript

Abstract

The structural and optical properties of amorphous semiconductor mercury cadmium telluride (a-MCT) are obtained by the first principles calculations. The total pair distribution functions and the density of states show that the a-MCT has the semiconductor characteristic. The calculated results of dielectric function show that E 2 peak of the imaginary of dielectric function for the crystal mercury cadmium telluride abruptly disappears in the amorphous case due to the long-range disorders. And the imaginary of dielectric function of a-MCT shows a large broad peak, which is in agreement with the available results of other amorphous semiconductors. From the linear extrapolation of the curve ħωɛ 2(ω)1/2 versus ħω, it can be obtained that the optical energy gap of amorphous semiconductor Hg0.5Cd0.5Te is 0.51±0.05 eV.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Kramer B. Electronic structure and optical properties of amorphous germanium and silicon. Phys Stat Sol b, 1971, 47(2): 501–510

    Article  Google Scholar 

  2. Kramer B, Maschke K, Thomas P. Optical properties of amorphous III–V compounds II. Theory. Phys Stat Sol b, 1972, 49(2): 525–534

    Article  Google Scholar 

  3. Tripathi R S, Moseley L L, Lukes T. Optical absorption in non-crystalline semiconductors. Phys Stat Sol b, 1977, 83(1): 197–207

    Article  Google Scholar 

  4. Zanatta A R, Mulato M, Chambouleyron I. Exponential absorption edge and disorder in column IV amorphous semiconductors. J Appl Phys, 1998, 84(9): 5184–5190

    Article  Google Scholar 

  5. Knief S, Niessen W v, Koslowski T. Disorder, defects, and optical absorption in a-Si and a-Si:H. Phys Rev B, 1999, 59(20): 12940–12946

    Article  Google Scholar 

  6. Jackson W B, Kelso S M, Tsai C C, et al. Energy dependence of the optical matrix element in hydrogenated amorphous and crystalline silicon. Phys Rev B, 1985, 31(8): 5187–5198

    Article  Google Scholar 

  7. Fried M, Silfhout A V. Optical dispersion relations in two types of amorphous silicon using Adachi’s expression. Phys Rev B, 1994, 49(8): 5699–5702

    Article  Google Scholar 

  8. Adachi S. Optical dispersion relations in amorphous semiconductors. Phys Rev B, 1991, 43(15): 12316–12321

    Article  Google Scholar 

  9. Adachi S, Mori H. Optical properties of fully amorphous silicon. Phys Rev B, 2000, 62(15): 10158–10164

    Article  Google Scholar 

  10. Joannopoulos J D, Cohen M L. Electronic properties of complex crystalline and amorphous phases of Ge and Si. II. Band structure and optical properties. Phys Rev B, 1973, 8(6): 2733–2755

    Article  Google Scholar 

  11. Brodsky M H. Amorphous Semiconductor. Berlin: Springer-Verlag, 1979. 73–110

    Google Scholar 

  12. Shevchik N J, Tejeda J, Cardona M. Densities of valence states of amorphous and crystalline III–V and II–VI semiconductors. Phys Rev B, 1974, 9(6): 2627–2648

    Article  Google Scholar 

  13. Connell G A N, Temkin R J. Modeling the structure of amorphous tetrahedrally coordinated semiconductors. I. Phys Rev B, 1974, 9(12): 5323–5326

    Article  Google Scholar 

  14. Wooten F, Winer K, Weaire D. Computer generation of structural models of amorphous Si and Ge. Phys Rev Lett, 1985, 54(13): 1392–1395

    Article  Google Scholar 

  15. Biswas R, Grest G S, Soukoulis C M. Generation of amorphoussilicon structures with use of molecular-dynamics simulations. Phys Rev B, 1987, 36(14): 7437–7441

    Article  Google Scholar 

  16. Luedtke W D, Landman U. Preparation, structure, dynamics, and energetics of amorphous silicon: A molecular-dynamics study. Phys Rev B, 1989, 40(2): 1164–1174

    Article  Google Scholar 

  17. Car R, Parrinello M. Structural, dymanical, and electronic properties of amorphous silicon: An ab initio molecular-dynamics study. Phys Rev Lett, 1988, 60(3): 204–207

    Article  Google Scholar 

  18. Knief S, Niessen W v, Koslowski T. Defects in a-Si and a-Si:H: A numerical study. Phys Rev B, 1998, 58(8): 4459–4472

    Article  Google Scholar 

  19. Segall M D, Lindan P J D, Probert M J, et al. First-principles simulation: Ideas, illustrations and the CASTEP code. J Phys: Cond Matter, 2002, 14(11): 2717–2744

    Article  Google Scholar 

  20. Milman V, Winkler B, White J A, et al. Electronic structure, properties, and phase stability of inorganic crystals: A pseudopotential planewave study. Int J Quantum Chem, 2000, 77(5): 895–910

    Article  Google Scholar 

  21. Vanderbilt D. Soft self-consistent pseudopotentials in a generalized eigenvalue formalism. Phys Rev B, 1990, 41(11): 7892–7895

    Article  Google Scholar 

  22. Perdew J P, Burke K, Ernzerhof M. Generalized gradient approximation made simple. Phys Rev Lett, 1996, 77(18): 3865–3868

    Article  Google Scholar 

  23. Adachi S. Model dielectric constants of GaP, GaAs, GaSb, InP, InAs, and InSb. Phys Rev B, 1987, 35(14): 7454–7463

    Article  MathSciNet  Google Scholar 

  24. Viña L, Logothetidis S, Cardona M. Temperature dependence of the dielectric function of germanium. Phys Rev B, 1984, 30(4): 1979–1991

    Article  Google Scholar 

  25. Grasso V, Mondio G, Saitta G, et al. Optical reflectivity of ion-implanted amorphous GaAs. Appl Phys Lett, 1978, 33(7): 632–635

    Article  Google Scholar 

  26. Adachi S, Miyazaki T, Hamadate S. Optical properties of amorphous InSb. J Appl Phys, 1992, 71(1): 395–397

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to XiaoShuang Chen or Wei Lu.

Additional information

Supported by the National Basic Research Program of China (“973” Project) (Grant No. 2007CB613205), the National Natural Science Foundation of China (Grant Nos.10725418, 10734090, 60576068), the Key Fund of Shanghai Science and Technology Foundation (Grant No. 08JC1421100) and the Knowledge Innovation Program of the Chinese Academy of Sciences

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, L., Chen, X., Lu, W. et al. Optical property of amorphous semiconductor mercury cadmium telluride from first-principles study. Sci. China Ser. E-Technol. Sci. 52, 1928–1932 (2009). https://doi.org/10.1007/s11431-009-0119-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11431-009-0119-z

Keywords

Navigation