Skip to main content
Log in

Analysis on parallel implementations of fixed-complexity sphere decoder

  • Research Paper
  • Published:
Science China Information Sciences Aims and scope Submit manuscript

Abstract

Sphere decoders are widely investigated for the implementation of multiple-input multiple-output (MIMO) detection. Among a large number of sphere decoding algorithms, the fixed-complexity sphere decoder (FSD) exhibits remarkable advantages in terms of constant throughput and high flexibility of parallel implementation. In this paper, we present a four-nodes-per-cycle parallel FSD architecture with balanced performance and hardware complexity, and several examples of VLSI implementation for different types of modulation and both real and complex signal models. Implementation aspects and architecture details are analyzed in order to present a hardware-level perspective of the FSD implementation. Therefore a variety of performance-complexity trade-offs are provided. The implementation results show that the proposed parallel FSD architecture is highly efficient and flexible, especially in the complex signal model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Paulraj A J, Gore D A, Nabar R U, et al. An overview of MIMO communications — a key to gigabit wireless. P IEEE, 2004, 92: 198–218

    Article  Google Scholar 

  2. Agrell E, Eriksson T, Vardy A, et al. Closest point search in lattices. IEEE Trans Inform Theory, 2002, 48: 2201–2214

    Article  MathSciNet  MATH  Google Scholar 

  3. Burg A, Borgmann M, Wenk M, et al. VLSI implementation of MIMO detection using the sphere decoding algorithm. IEEE J Solid-St Circ, 2005, 40: 1566–1577

    Article  Google Scholar 

  4. Cerato B, Masera G, Viterbo E. Decoding the Golden code: a VLSI design. IEEE Trans VLSI, 2009, 17: 156–160

    Article  Google Scholar 

  5. Guo Z, Nilsson P. Algorithm and implementation of the K-best sphere decoding for MIMO detection. IEEE J Sel Area Comm, 2006, 24: 491–503

    Article  Google Scholar 

  6. Barbero L G, Thompson J S. Extending a fixed-complexity sphere decoder to obtain likelihood information for Turbo-MIMO systems. IEEE Trans Veh Technol, 2008, 57: 2804–2814

    Article  Google Scholar 

  7. Hochwald B M, Brink S T. Achieving near-capacity on a multiple antenna channel. IEEE Trans Commun, 2003, 51: 389–399

    Article  Google Scholar 

  8. Lee J, Park S C. Novel techniques of a list sphere decoder for high throughput. In: Proceedings of International Conference on Advanced Communication Technology. Phoenix Park: National Computerization Agency, 2006. 1785–1787

    Google Scholar 

  9. Myllylä M, Juntti M. Implementation aspects of list sphere detector algorithms. In: Proceedings of IEEE Conference on Telecommunications. Washington DC: IEEE, 2007. 3915–3920

    Google Scholar 

  10. Witte E M, Borlenghi F, Ascheid G, et al. A scalable VLSI architecture for soft-input soft-output depth-first sphere decoding. IEEE Trans Circuits-II, 2010, 57: 706–710

    Google Scholar 

  11. Studer C, Burg A, Bölcskei H. Soft-output sphere decoding: algorithms and VLSI implementation. IEEE J Sel Area Comm, 2006, 26: 290–300

    Article  Google Scholar 

  12. Boher L, Rabineau R, Helard M. Architecture and implementation of an iterative receiver for MIMO systems. In: Proceedings of International Symposium on Turbo Codes and Related Topics. Lausanne: IEEE, 2008. 96–101

    Chapter  Google Scholar 

  13. Burg A, Felber N, Fichtner W. A 50 Mbps 4 × 4 maximum likelihood decoder for multiple-input multiple-output systems with QPSK modulation. In: Proceedings of IEEE International Conference on Electronics, Circuits and Systems. Sharjah: IEEE, 2003. 332–335

    Google Scholar 

  14. Garrett D, Davis L, Brink S T, et al. Silicon complexity for maximum likelihood MIMO detection using spherical decoding. IEEE J Solid-St Circ, 2004, 39: 1544–1552

    Article  Google Scholar 

  15. Fink J, Roger S, Gonzalez A, et al. Complexity assessment of sphere decoding methods for MIMO detection. In: Proceedings of IEEE International Symposium on Signal Processing and Information Technology. Ajman: IEEE, 2009. 9–14

    Google Scholar 

  16. Barbero L G, Thompson J S. Rapid prototyping of a fixed-throughput sphere decoder for MIMO systems. In: Proceedings of IEEE International Conference on Communications. Istanbul: IEEE, 2006. 3082–3087

    Google Scholar 

  17. Khairy M S, Abdallah M M, Habib S E-D. Efficient FPGA implementation of MIMO detector for mobile WiMAX system. In: Proceedings of IEEE International Conference on Communications. Dresden: IEEE, 2009. 1–5

    Google Scholar 

  18. Jaldén J, Barbero L G, Ottersten B, et al. The error probability of the fixed-complexity sphere decoder. IEEE Trans Signal Proces, 2009, 57: 2711–2720

    Article  Google Scholar 

  19. Wübben D, Böhnke R, Rinas J, et al. Efficient algorithm for decoding layered space-time codes. Electron Lett, 2001, 37: 1348–1350

    Article  Google Scholar 

  20. Mohaisen M, KyungHi C. On improving the efficiency of the fixed-complexity sphere decoder. In: Proceedings of IEEE Conference on Vehicular Technology. Anchorage: IEEE, 2009. 1–5

    Google Scholar 

  21. Ienne P, Verma A K. Arithmetic transformations to maximise the use of compressor trees. In: Proceedings of IEEE International Workshop on Electronic Design, Test and Applications. Perth: IEEE, 2004. 219–224

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bin Wu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wu, B., Masera, G. Analysis on parallel implementations of fixed-complexity sphere decoder. Sci. China Inf. Sci. 56, 1–11 (2013). https://doi.org/10.1007/s11432-011-4441-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11432-011-4441-2

Keywords

Navigation