Skip to main content
Log in

The interpretation of gravity anomaly on lunar Apennines

  • Published:
Science in China Series G: Physics, Mechanics and Astronomy Aims and scope Submit manuscript

Abstract

The lunar Apennines, located in the southeast of Mare Imbrium, is the largest range on the Moon. The gravity anomalies on profiles across the mountains reveal evidence of a great fault zone characteristic. The deep crustal structures of lunar Apennines are analyzed on the basis of topographic data from Chang’E-1 satellite and gravity data from Lunar Prospector. The inverted crust-mantle models indicate the presence of a lithosphere fault beneath the mountains. Inverted results of gravity and the hypothesis of lunar thermal evolution suggest that the lunar lithosphere might be broken ∼3.85 Ga ago due to a certain dynamic lateral movement and compression of lunar lithosphere. This event is associated with the history of magma filling and lithosphere deformation in the mountain zone and adjacent area. Moreover, the formation and evolution of Imbrium basin impose this effect on the process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ping J S, Huang Q, Yan J G, et al. Lunar topographic model CLTM-s01 from Chang’E-1 laser altimeter. Sci China Ser G-Phys Mech Astron, 2009, 52(7): 1105–1114

    Article  ADS  Google Scholar 

  2. Morgan J P, Phillips R J. Inversion of combined gravity and bathymetry data for crustal structure — A prescription for downward continuation. Earth Planet Sci Lett, 1993, 119: 167–179

    Article  ADS  Google Scholar 

  3. Zuber M T, Smith D E, Lemoine F G, et al. The shape and internal structure of the Moon from the Clementine mission. Science, 1994, 266: 1839–1843

    Article  ADS  Google Scholar 

  4. Neumann G A, Zuber M T, Smith D E, et al. The lunar crust: Global signature and structure of major basins. J Geophys Res, 1996, 101: 16841–16863

    Article  ADS  Google Scholar 

  5. Neumann G A, Lemoine F G, Zuber M T, et al. What does gravity tell us about lunar crustal structure? Lunar Planet Sci, 1997, XXIX: 1713

    Google Scholar 

  6. Konopliv A S, Binder A B, Hood L L, et al. Improved gravity field of the Moon from Lunar Prospector. Science, 1998, 281: 1476–1480

    Article  ADS  Google Scholar 

  7. Wieczorek M A, Phillips R J. Potential anomalies on a sphere: Applications to the thickness of the lunar crust. J Geophys Res-Planet, 1998, 103(E1): 1715–1724

    Article  ADS  Google Scholar 

  8. Potts L V, von Frese R R B. Comprehensive mass modeling of the Moon from spectrally correlated free-air and terrain gravity data. J Geophys Res, 2003a, 108(E4): 5024, doi:10.1029/2000JE001440

    Article  Google Scholar 

  9. Potts L V, von Frese R R B. Crustal attributes of lunar basins from terrain-correlated free-air gravity anomalies. J Geophys Res, 2003b, 108(E5): 5037, doi:10.1029/2000JE001446

    Article  Google Scholar 

  10. Bussey B, Spudis P D, Hawke B R, et al. Geology and composition of the Apennine mountains, lunar Imbrium basin. Lunar Planet Sci, 1998, XXIX: 1352

    ADS  Google Scholar 

  11. Spudis P, Head J W. Geology of the Imbrium basin Apennine mountains and relation to the Apollo 15 landing site. In: Proceedings Lunar Science Conference 8th, 1977. 2785-2797

  12. Konopliv A S, Asmar S W, Carranza E, et al. Recent gravity models as a result of the Lunar Prospector mission. Icarus, 2001, 150: 1–18

    Article  ADS  Google Scholar 

  13. Namiki N, Iwata T, Matsumoto K, et al. Farside gravity field of the Moon from Four-Way Doppler Measurements of SELENE (Kaguya). Science, 2009, 323: 900–905

    Article  Google Scholar 

  14. Li F, Yan J G, Ping J S. Lunar exploration and lunar gravity field determination (in Chinese). Prog Geophys, 2006, 21(1): 31–37

    MATH  Google Scholar 

  15. Yan J G, Ping J S, Li F, et al. Character analysis of the lunar gravity field by the LP165P model and its effect on lunar satellite orbit (in Chinese). Chin J Geophys, 2006, 49(2): 408–414

    Google Scholar 

  16. Ferrari A J, Nelson D L, Sjogren W L, et al. The isostatic state of the lunar Apennines and regional surroundings. J Geophys Res, 1978, 83: 2863–2871

    Article  ADS  Google Scholar 

  17. Spudis P D. Composition and origin of the Apennine Bench Formation. In: Lunar and Planetary Science Conference 9th. New York: Pergamon Press, 1978. 3379–3394

    Google Scholar 

  18. Wieczorek M A, Jolliff B L, Khan A, et al. The constitution and structure of the lunar interior. Rev Mineral Geochem, 2006, 60(1): 221–364

    Article  Google Scholar 

  19. Ouyang Z Y. Advance of lunar geology (in Chinese). Adv Earth Sci, 1994, 9(2): 80–81

    Google Scholar 

  20. Wise D U, Yates M T. Macons as structural relief on a lunar “Moho”. J Geophys Res, 1970, 75: 261–268

    Article  ADS  Google Scholar 

  21. Solomon S C, Head J W. Vertical movement in mare basins: Relation to mare emplacement, basin tectonics, and lunar thermal history. J Geophys Res, 1979, 84: 1667–1682

    Article  ADS  Google Scholar 

  22. Ghods A, Arkani-Hamed J. Impact-induced convection as the main mechanism for formation of lunar mare basalts. J Geophys Res, 2007, 112(E3): E03005, doi:10.1029/2006JE002709

    Article  Google Scholar 

  23. Solomon S C, Head J W. Lunar Mascon basins: Lava filling, tectonics, and evolution of the lithosphere. Rev Geophys Space Phys, 1980, 18(1): 107–140

    Article  ADS  Google Scholar 

  24. Watters T R, Konopliv A S. The topography and gravity of Mare Serenitatis: Implications for subsidence of the mare surface. Planet Space Sci, 2001, 49: 743–748

    Article  ADS  Google Scholar 

  25. Mohit P S, Phillips R J. Viscoelastic evolution of lunar multiring basins. J Geophys Res, 2006, 111(E12): E12001, doi:10.1029/2005JE-002654

    Article  ADS  Google Scholar 

  26. Anderson E M. The Dynamics of Faulting and Dyke Formation With Application to Britain. London: Oliver and Boyd, 1951. 1–50

    Google Scholar 

  27. Wang Q S, Teng J W, Wang G J, et al. Specific gravity field of the Himalayas east structural knot (in Chinese). Prog Geophys, 2007, 22(1): 35–42

    Google Scholar 

  28. Chen S Z. Gravity anomalies, lithospheric structure and plate dynamics in the Himalayas (in Chinese). Geotectonica et Metallogenia, 1993, 17(4): 315–334

    Google Scholar 

  29. Cui J W. Tectonic evolution of the Himalayan collision belt (in Chinese). Acta Geol Sin, 1997, 71(2): 107–112

    Google Scholar 

  30. Zhao W J, Nelson K D, Che J K, et al. Deep seismic reflection in Himalaya region reveals the complexity of the crust and upper mantle (in Chinese). Acta Geoscient Sin, 1996, 17(2): 138–152

    Google Scholar 

  31. Zhao W J, Zhao X, Shi D N, et al. Progress in the study of deep (INDEPTH) profiles in the Himalayas and Qinghai-Tibet Plateau (in Chinese). Geol Bull China, 2002, 21(11): 691–700

    MathSciNet  Google Scholar 

  32. Su W, Peng Y J, Zheng Y J, et al. Crust and upper mantle shear velocity structure beneath the Tibetan plateau and adjacent areas (in Chinese). Acta Geoscient Sin, 2002, 23(3): 193–200

    Google Scholar 

  33. Peng C. Bouguer anomalies and crustal density structure in western China (in Chinese). Acta Geoscient Sin, 2005, 26(5): 417–422

    Google Scholar 

  34. Hetenyi G, Cattin R, Vergne J, et al. The effective elastic thickness of the India Plate from receiver function imaging, gravity anomalies and thermomechanical modeling. Geophys J Int, 2006, 167(3): 1106–1118

    Article  ADS  Google Scholar 

  35. Shearer C K, Hess P C, Wieczorek M A, et al. Thermal and magmatic evolution of the Moon. Rev Mineral Geochem, 2006, 60(1): 365–518

    Article  Google Scholar 

  36. Elkins-Tanton L T, Hager B H, Grove T L. Magmatic effects of the lunar late heavy bombardment. Earth Planet Sci Lett, 2004, 222: 17–27

    Article  ADS  Google Scholar 

  37. Hiesinger H, Head J W. New view of lunar geoscience: An introduction and overview. Rev Mineral Geochem, 2006, 60(1): 1–81

    Article  Google Scholar 

  38. Wilhelms D E. The geologic history of the Moon. Geological Survey Professional Paper, 1987, 1348: 1–302

    Google Scholar 

  39. Jones A P, Price G D, Price N J, et al. Impact induced melting and the development of large igneous provinces. Earth Planet Sci Lett, 2002, 202: 551–561

    Article  ADS  Google Scholar 

  40. Melosh J H. Impact Cratering: A Geologic Process. New York: Oxford University Press, 1989

    Google Scholar 

  41. Wieczorek M A, Phillips R J. Lunar multiring basins and the cratering process. Icarus, 1999, 139: 246–259

    Article  ADS  Google Scholar 

  42. Watters W A, Zuber M T, Hager B H. Thermal perturbations caused by large impacts and consequences for mantle convection. J Geophys Res, 2009, 114: E02001, doi:10.1029/2007JE002964

    Article  Google Scholar 

  43. Head J W. Serenitatis multi-ringed basin: Regional geology and basin ring interpretation. Moon Planets, 1979, 21: 439–462

    Article  ADS  Google Scholar 

  44. Hartmann W K, Strom R G, Weidenschilling S J, et al. Chronology of planetary volcanism by comparative studies of planetary craters. Basaltic Volcanism on the Terrestrial Planets. New York: Pergamon Press, 1981. 1050–1127

    Google Scholar 

  45. Neukum G, Ivanov B A. Crater size distributions and impact probabilities on Earth from lunar, terrestrial-planet, and asteroid cratering data. In: Gehrels T, ed. Hazard Due to Comets and Asteroids. Tucson: University of Arizona Press, 1994. 359–416

    Google Scholar 

  46. Stöffler D, Ryder G. Stratigraphy and isotope ages of lunar geologic units: Chronological standard for the inner solar system. In: Kallenbach R, Geiss J, Hartmann W K, eds. Chronology and Evolution of Mars. Dordrech/Boston/London: Kluwer Academic Press, 2001. 9–54

    Google Scholar 

  47. Spudis P D. The geology of Multi-ring Impact Basins. Cambridge: Cambridge University Press, 1993

    Book  Google Scholar 

  48. Wessel P, Smith W H F. Free software helps map and display data. Eos Trans AGU, 1991, 72(41): 441

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chao Chen.

Additional information

Supported by the National Natural Science Foundation of China (Grant Nos. 40774060 and 10973031) and the CAS Key Research Program (Grant No. KJCX2-YW-T13-2)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chen, C., Chen, B., Ping, J. et al. The interpretation of gravity anomaly on lunar Apennines. Sci. China Ser. G-Phys. Mech. Astron. 52, 1824–1832 (2009). https://doi.org/10.1007/s11433-009-0281-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11433-009-0281-0

Keywords

Navigation