Skip to main content
Log in

Constrains on f(T) gravity with the strong gravitational lensing data

  • Article
  • Published:
Science China Physics, Mechanics & Astronomy Aims and scope Submit manuscript

Abstract

Strong lensing is an effective way to probing the properties of dark energy. In this paper, we use the strong lensing data to constrain the f(T) theory, which is a new modified gravity to explain the present accelerating cosmic expansion without the need of dark energy. In our discussion, the CMB and BAO data are also added to constrain model parameters tightly and three different f(T) models are studied. We find that strong lensing has an important role on constraining f(T) models, and once the CMB+BAO data is added, a tighter constraint is obtained. However, the consistency of our result with what is obtained from SNIa+CMB+BAO is actually model-dependent.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Riess A G, Filippenko A V, Challis P, et al. Observational evidence from supernovae for an accelerating universe and a cosmological constant. Astron J, 1998, 116: 1009–1038

    Article  ADS  Google Scholar 

  2. Perlmutter S, Aldering G, Goldhaber G, et al. Measurements of Omega and Lambda from 42 high redshift supernovae. Astrophys J, 1999, 517: 565–586

    Article  ADS  Google Scholar 

  3. Tegmark M, Strauss M A, Blanton M R, et al. Cosmological parameters from SDSS and WMAP. Phys Rev D, 2004, 69: 103501

    Article  ADS  Google Scholar 

  4. Eisenstein A, Zehavi I, Hogg D, et al. Detection of the baryon acoustic peak in the large-scale correlation function of SDSS luminous red galaxies. Astrophys J, 2005, 633: 560–574

    Article  ADS  Google Scholar 

  5. Spergel D, Verde L, Peiris H, et al. First year Wilkinson Microwave Anisotropy Probe (WMAP) observations: Determination of cosmological parameters. Astrophys J Suppl, 2003, 148: 175–194

    Article  ADS  Google Scholar 

  6. Spergel D, Bean R, Dore O, et al. Wilkinson microwave anisotropy probe (WMAP) three year results: Implications for cosmology. Astrophys J Suppl, 2007, 170: 377–408

    Article  ADS  Google Scholar 

  7. Nojiri S, Odintsov S D. Dark energy, inflation and dark matter from modified F(R) gravity. arXiv:0807.0685

  8. Sotiriou T P, Faraoni V. f (R) theories of gravity. Rev Mod Phys, 2010, 82: 451–497

    Article  ADS  MATH  MathSciNet  Google Scholar 

  9. De Felice A, Tsujikawa S. f (R) theories. Living Rev Rel, 2010, 13: 3

    Google Scholar 

  10. Ferraro R, Fiorini F. Modified teleparallel gravity: Inflation without inflaton. Phys Rev D, 2007, 75: 084031

    Article  ADS  MathSciNet  Google Scholar 

  11. Ferraro R, Fiorini F. On Born-Infeld gravity inWeitzenbock spacetime. Phys Rev D, 2008, 78: 124019

    Article  ADS  MathSciNet  Google Scholar 

  12. Bengochea G, Ferraro R. Dark torsion as the cosmic speed-up. Phys Rev D, 2009, 79: 124019

    Article  ADS  Google Scholar 

  13. Linder E. Einstein’s other gravity and the acceleration of the universe. Phys Rev D, 2010, 81: 127301

    Article  ADS  Google Scholar 

  14. Einstein A. Riemannian geometry, while maintaining the notion of teleparallelism. Phys Math Klasse, 1928, 17: 217–221

    Google Scholar 

  15. Einstein A. On the unified field theory that is based upon the RIemann metric and absolute parallelism. Math Ann, 1929, 102: 685–697

    Article  Google Scholar 

  16. Hayashi K, Shirafuji T. New general relativity. Phys Rev D, 1979, 19: 3524–3553

    Article  ADS  MATH  MathSciNet  Google Scholar 

  17. Wu P, Yu H. f (T) models with phantom divide line crossing. Eur Phys J C, 2011, 71: 1552

    Article  ADS  Google Scholar 

  18. Bamba K, Geng C, Lee C, et al. Equation of state for dark energy in f (T) gravity. J Cosmol Astropart Phys, 2011, 1101: 021

    Article  ADS  Google Scholar 

  19. Iorio L, Saridakis E. Solar system constraints on f (T) gravity. Mon Not Roy Astron Soc, 2012, 427: 1555–1561

    Article  ADS  Google Scholar 

  20. Wu P, Yu H. The dynamical behavior of f (T) theory. Phys Lett B, 2010, 692: 176–179

    Article  ADS  MathSciNet  Google Scholar 

  21. Zhang Y, Li H, Gong Y, et al. Notes on f (T) theories. J Cosmol Astropart Phys, 2011, 07: 015

    Article  ADS  Google Scholar 

  22. Li B, Sotiriou T, Barrow J. f (T) gravity and local Lorentz invariance. Phys Rev D, 2011, 83: 064035

    Article  ADS  Google Scholar 

  23. Sotiriou T, Li B, Barrow J. Generalizations of teleparallel gravity and local Lorentz symmetry. Phys Rev D, 2011, 83: 104030

    Article  ADS  Google Scholar 

  24. Miao R, Li M, Miao Y. Violation of the first law of black hole thermodynamics in f (T) gravity. J Cosmol Astropart Phys, 2011, 11: 033

    Article  ADS  Google Scholar 

  25. Yang R. New types of f (T) gravity. Eur Phys J C, 2011, 71: 1797

    Article  ADS  Google Scholar 

  26. Wu P, Yu H. Observational constraints on f (T) theory. Phys Lett B, 2010, 693: 415–420

    Article  ADS  MathSciNet  Google Scholar 

  27. Bengochea G. Observational information for f (T) theories and dark torsion. Phys Lett B, 2011, 695: 405–411

    Article  ADS  Google Scholar 

  28. Cardone V, Radicella N, Camera S. Accelerating f (T) gravity models constrained by recent cosmological data. Phys Rev D, 2012, 85: 124007

    Article  ADS  Google Scholar 

  29. Cao S, Pan Y, Biesiada M, et al. Constraints on cosmological models from strong gravitational lensing systems. J Cosmol Astropart Phys, 2012, 03: 016

    Article  ADS  Google Scholar 

  30. Cao S, Covone G, Zhu Z. Testing the dark energy with gravitational lensing statistics. Astrophys J, 2012, 755: 31

    Article  ADS  Google Scholar 

  31. Liao K, Zhu Z. Constraints on f (R) cosmologies from strong gravitational lensing systems. Phys Lett B, 2012, 714: 1–5

    Article  ADS  Google Scholar 

  32. Treu T, Koopmans L, Bolton A, et al. The Sloan-lens ACS survey. II. Stellar populations and internal structure of early-type lens galaxies. Astrophys J, 2006, 640: 662–672

    Google Scholar 

  33. Biesiada M, Pisrkowska A, Malec B. Cosmic equation of state from strong gravitational lensing systems. Mon Not Roy Astron Soc, 2010, 406: 1055–1059

    ADS  Google Scholar 

  34. Newton E, Marshall P, Auger M, et al. The Sloan-lens ACS survey. XI. Beyond Hubble resolution: Size, luminosity and stellar mass of compact lensed galaxies at intermediate redshift. Astrophys J, 2011, 734: 104

    Article  ADS  Google Scholar 

  35. Koopmans L, Treu T. The structure and dynamics of luminous and dark matter in the early-type lens galaxy of 0047-281 at z = 0.485. Astrophys J, 2003, 583: 606–615

    Article  ADS  Google Scholar 

  36. Treu T, Koopmans L. Massive dark-matter halos and evolution of earlytype galaxies to z = 1. Astrophys J, 2004, 611: 739–760

    Article  ADS  Google Scholar 

  37. Yu H, Zhu Z. Combining optical and X-ray observations of galaxy clusters to constrain cosmological parameters. Res Astron Astrophys, 2011, 11: 776–786

    Article  ADS  Google Scholar 

  38. Ota N, Mitsuda K. A Uniform X-ray analysis of 79 distant galaxy clusters with ROSAT and ASCA. Astron Astrophys, 2004, 428: 757–779

    Article  ADS  Google Scholar 

  39. Bonamente M, Joy M, Roqueet S, et al. Determination of the cosmic distance scale from Sunyaev-Zel’dovich effect and Chandra X-ray measurements of high redshift galaxy clusters. Astrophys J, 2006, 647: 25–54

    Article  ADS  Google Scholar 

  40. Richard J, Kneib J, Jullo E, et al. A statistical study of multiply-imaged systems in the lensing cluster Abell 68. Astrophys J, 2007, 662: 781–796

    Article  ADS  Google Scholar 

  41. Komatsu E, Smith K, Dunkley J, et al. Seven-year Wilkinson Microwave Anisotropy Probe (WMAP) Observations: Cosmological interpretation. Astrophys J Suppl, 2011, 192: 18

    Article  ADS  Google Scholar 

  42. Dvali G, Turner M. Dark energy as a modification of the Friedmann equation. arXiv:astro-ph/0301510

  43. Chung D, Freese K. Cosmological challenges in theories with extra dimensions and remarks on the horizon problem. Phys Rev D, 2000, 61: 023511

    Article  ADS  MathSciNet  Google Scholar 

  44. Dvali G, Gabadadze G, Porrati M. 4-D gravity on a brane in 5-D Minkowski space. Phys Lett B, 2000, 485: 208–214

    Article  ADS  MATH  MathSciNet  Google Scholar 

  45. Wang Y, Mukherjee P. Robust dark energy constraints from supernovae, galaxy clustering, and three-year Wilkinson Microwave Anisotropy Probe Observations. Astrophys J, 2006, 650: 1–6

    Article  ADS  Google Scholar 

  46. Bond J, Efstathiou G, Tegmark M. Forecasting cosmic parameter errors from microwave background anisotropy experiments. Mon Not Roy Astron Soc, 1997, 291: L33–L41

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to HongWei Yu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wu, J., Li, Z., Wu, P. et al. Constrains on f(T) gravity with the strong gravitational lensing data. Sci. China Phys. Mech. Astron. 57, 988–993 (2014). https://doi.org/10.1007/s11433-013-5302-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11433-013-5302-3

Keywords

Navigation