Skip to main content
Log in

Arbitrated quantum signature scheme based on reusable key

  • Article
  • Published:
Science China Physics, Mechanics & Astronomy Aims and scope Submit manuscript

Abstract

An arbitrated quantum signature scheme without using entangled states is proposed. In the scheme, by employing a classical hash function and random numbers, the secret keys of signer and receiver can be reused. It is shown that the proposed scheme is secure against several well-known attacks. Specifically, it can stand against the receiver’s disavowal attack. Moreover, compared with previous relevant arbitrated quantum signature schemes, the scheme proposed has the advantage of less transmission complexity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Shor P W. Polynomial-time algorithms for prime factorization and discrete logarithms on a quantum computer. SIAM J Comput, 1997, 26: 1484–1509

    Article  MathSciNet  MATH  Google Scholar 

  2. Grover L K. A fast quantum mechanical algorithm for database search. In: Proceedings of the 28th Annual ACM Symposium on Theory of Computation. New York: ACM Press, 1996. 212–219

    Google Scholar 

  3. Gisin N, Ribordy G, Tittel W, et al. Quantum cryptography. Rev Mod Phys, 2002, 74: 145–195

    Article  ADS  Google Scholar 

  4. Deng F G, Long G L. Controlled order rearrangement encryption for quantum key distribution. Phys Rev A, 2003, 68: 042315

    Article  ADS  Google Scholar 

  5. Deng F G, Long G L. Bidirectional quantum key distribution protocol with practical faint laser pulses. Phys Rev A, 2004, 70: 012311

    Article  ADS  Google Scholar 

  6. Hwang W Y. Quantum key distribution with high loss: Toward global secure communication. Phys Rev Lett, 2003, 91: 057901

    Article  ADS  Google Scholar 

  7. Wang X B. Beating the photon-number-splitting attack in practical quantum cryptography. Phys Rev Lett, 2005, 94: 230503

    Article  ADS  Google Scholar 

  8. Lo H K, Ma X F, Chen K. Decoy state quantum key distribution. Phys Rev Lett, 2005, 94: 230504

    Article  ADS  Google Scholar 

  9. Li X H, Deng F G, Zhou H Y. Efficient quantum key distribution over a collective noise channel. Phys Rev A, 2008, 78: 022321

    Article  ADS  Google Scholar 

  10. Hillery M, Bužek V, Berthiaume A. Quantum secret sharing. Phys Rev A, 1999, 59: 1829–1834

    Article  MathSciNet  ADS  Google Scholar 

  11. Karlsson A, Koashi M, Imoto N. Quantum entanglement for secret sharing and secret splitting. Phys Rev A, 1999, 59: 162–168

    Article  ADS  Google Scholar 

  12. Hao L, Li J L, Long G L. Eavesdropping in a quantum secret sharing protocol based on Grover algorithm and its solution. Sci China-Phys Mech Astron, 2010, 53: 491–495

    Article  ADS  Google Scholar 

  13. Xiao L, Long G L, Deng F G, et al. Efficient multiparty quantumsecret-sharing schemes. Phys Rev A, 2004, 69: 052307

    Article  ADS  Google Scholar 

  14. Long G L, Liu X S. Theoretically efficient high-capacity quantum-key-distribution scheme. Phys Rev A, 2002, 65: 032302

    Article  ADS  Google Scholar 

  15. Bostrom K, Felbinger T. Deterministic secure direct communication using entanglement. Phys Rev Lett, 2002, 89: 187902

    Article  ADS  Google Scholar 

  16. Deng F G, Long G L, Liu X S. Two-step quantum direct communication protocol using the Einstein-Podolsky-Rosen pair block. Phys Rev A, 2003, 68: 042317

    Article  ADS  Google Scholar 

  17. Deng F G, Long G L. Secure direct communication with a quantum one-time pad. Phys Rev A, 2004, 69: 052319

    Article  ADS  Google Scholar 

  18. Cai Q Y, Li B W. Deterministic secure communication without using entanglement. Chin Phys Lett, 2004, 21: 601–603

    Article  ADS  Google Scholar 

  19. Wang C, Deng F G, Li Y S. Quantum secure direct communication with high-dimension quantum superdense coding. Phys Rev A, 2005, 71: 044305

    Article  ADS  Google Scholar 

  20. Li X H, Li C Y, Deng F G, et al. Quantum secure direct communication with quantum encryption based on pure entangled states. Chin Phys B, 2007, 16: 2149–2153

    Article  Google Scholar 

  21. Lin S, Wen Q Y, Gao F. Quantum secure direct communication with X-type entangled states. Phys Rev A, 2008, 78: 064304

    Article  ADS  Google Scholar 

  22. Wang T J, Li T, Du F F, et al. High-capacity quantum secure direct communication based on quantum hyperdense coding with hyperentanglement. Chin Phys Lett, 2011, 28: 040305

    Article  ADS  Google Scholar 

  23. Gu B, Zhang C Y, Huang Y G, et al. A two-step quantum secure direct communication protocol with hyperentanglement. Chin Phys B, 2011, 20: 100309

    Article  ADS  Google Scholar 

  24. Gu B, Zhang C Y, Cheng G S. Robust quantum secure direct communication with a quantum one-time pad over a collective-noise channel. Sci China-Phys Mech Astron, 2011, 54: 942–947

    Article  ADS  Google Scholar 

  25. Liu D, Chen J L, Jiang W. High-capacity quantum secure direct communication with single photons in both polarization and spatial-mode degrees of freedom. Int J Theor Phys, 2012, 51: 2923–2929

    Article  MATH  Google Scholar 

  26. Sun Z W, Du R G, Long D Y. Quantum secure direct communication with two-photon four-qubit cluster states. Int J Theor Phys, 2012, 51: 1946–1952

    Article  MathSciNet  MATH  Google Scholar 

  27. Ren B C, Wei H R, Hua M, et al. Photonic spatial Bell-state analysis for robust quantum secure direct communication using quantum dot-cavity systems. Eur Phys J D, 2013, 67: 30

    Article  ADS  Google Scholar 

  28. Gu B, Huang Y G, Fang X, et al. Robust quantum secure communication with spatial quantum states of single photons. Int J Theor Phys, 2013, 52: 4461–4469

    Article  MathSciNet  MATH  Google Scholar 

  29. Chang Y, Xu C X, Zhang S B, et al. Quantum secure direct communication and authentication protocol with single photons. Chin Sci Bull, 2013, 58: 4571–4576

    Article  Google Scholar 

  30. Tsai C W, Hwang, T. Deterministic quantum communication using the symmetric W state. Sci China-Phys Mech Astron, 2013, 56: 1903–1908

    Article  ADS  Google Scholar 

  31. Zhou J X, Zhou Y J, Niu X X. Quantum proxy signature scheme with public verifiability. Sci China-Phys Mech Astron, 2011, 54: 1828–1832

    Article  ADS  Google Scholar 

  32. Liang M, Yang L. Public-key encryption and authentication of quantum information. Sci China-Phys Mech Astron, 2012, 55: 1618–1629

    Article  ADS  Google Scholar 

  33. Wang M M, Chen X B, Yang Y X. A blind quantum signature protocol using the GHZ states. Sci China-Phys Mech Astron, 2013, 56: 1636–1641

    Article  ADS  Google Scholar 

  34. Shi J H, Zhang S L, Chang Z G. The security analysis of a threshold proxy quantum signature scheme. Sci China-Phys Mech Astron, 2013, 56: 519–523

    Article  ADS  Google Scholar 

  35. Luo Y P, Hwang, Tzonelih. Arbitrated quantum signature of classical messages without using authenticated classical channels. Quantum Inf Process, 2014, 13: 113–120

    Article  MathSciNet  ADS  Google Scholar 

  36. Li Q, Li C Q, Long D Y, et al. Efficient arbitrated quantum signature and its proof of security. Quantum Inf Process, 2013, 12: 2427–2439

    Article  MathSciNet  MATH  ADS  Google Scholar 

  37. Barnum H, Crepeau C, Gottesman D, et al. Authentication of Quantum Messages. Washington DC: IEEE Computer Society Press, 2002. 449–458

    Google Scholar 

  38. Zeng G H, Keitel C H. Arbitrated quantum-signature scheme. Phys Rev A, 2002, 65: 042312

    Article  MathSciNet  ADS  Google Scholar 

  39. Curty M, Lütkenhaus N. Comment on “Arbitrated quantum-signature scheme”. Phys Rev A, 2008, 77: 064301

    Article  Google Scholar 

  40. Zeng G H. Reply to “Comment on ‘Arbitrated quantum-signature scheme’”. Phys Rev A, 2008, 78: 016301

    Article  MathSciNet  ADS  Google Scholar 

  41. Li Q, Chan W H, Long D Y. Arbitrated quantum signature scheme using Bell states. Phys Rev A, 2009, 79: 054307

    Article  MathSciNet  ADS  Google Scholar 

  42. Zou X F, Qiu D W. Security analysis and improvements of arbitrated quantum signature schemes. Phys Rev A, 2010, 82: 042325

    Article  ADS  Google Scholar 

  43. Gao F, Qin S J, Guo F Z, et al. Cryptanalysis of the arbitrated quantum signature protocols. Phys Rev A, 2011, 84: 022344

    Article  ADS  Google Scholar 

  44. Choi JW, Chang K Y, Hong D. Security problem on arbitrated quantum signature schemes. Phys Rev A, 2011, 84: 062330

    Article  ADS  Google Scholar 

  45. Sun Z W, Du R G, Wang B H, et al. Improvements on the security of arbitrated quantum signature protocols. arXiv:quan-ph/1107.2459

  46. Li Q, Li C Q, Wen Z H, et al. On the security of arbitrated quantum signature schemes. arXiv:quan-ph/1205.3265

  47. Hwang T, Luo Y P, Chong S K. Comment on “security analysis and improvements of arbitrated quantum signature schemes”. Phys Rev A, 2012, 85: 056301

    Article  ADS  Google Scholar 

  48. Zhang K J, Qin S J, Sun Y, et al. Reexamination of arbitrated quantum signature: The impossible and the possible. Quantum Inf Process, 2013, 12: 3127–3141

    Article  MathSciNet  MATH  ADS  Google Scholar 

  49. Zhang K J, Zhang W W, Li D. Improving the security of arbitrated quantum signature against the forgery attack. Quantum Inf Process, 2013, 12: 2655–2669

    Article  MathSciNet  MATH  ADS  Google Scholar 

  50. Boykin P O, Roychowdhury V. Optimal encryption of quantum bits. Phys Rev A, 2003, 67: 042317

    Article  ADS  Google Scholar 

  51. Cai Q Y. Eavesdropping on the two-way quantum communication protocols with invisible photons. Phys Lett A, 2006, 351: 23–25

    Article  MATH  ADS  Google Scholar 

  52. Deng F G, Zhou P, Li X H, et al. Robustness of two-way quantum communication protocols against Trojan horse attack. arXiv:quantph/0508168

  53. Wang G M, Ying M S. Unambiguous discrimination among quantum operations. Phys Rev A, 2006, 73: 042301

    Article  ADS  Google Scholar 

  54. Nielsen M A, Chuang I L. Quantum Computation and Quantum Information. Cambridge: Cambridge University Press, 2000. 425–493

    MATH  Google Scholar 

  55. van Enk S J, Cirac J I, Zoller P. Ideal quantum communication over noisy channels: A quantum optical implementation. Phys Rev Lett, 1997, 78: 4293–4296

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Song Lin.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yu, C., Guo, G. & Lin, S. Arbitrated quantum signature scheme based on reusable key. Sci. China Phys. Mech. Astron. 57, 2079–2085 (2014). https://doi.org/10.1007/s11433-014-5491-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11433-014-5491-4

Keywords

Navigation