Skip to main content
Log in

Manipulation of multi-transparency windows and fast-slow light transitions in a hybrid cavity optomechanical system

  • Article
  • Published:
Science China Physics, Mechanics & Astronomy Aims and scope Submit manuscript

Abstract

We study the generation of quadruple-transparency windows and the implementation of a conversion between slow and fast light in a hybrid optomechanical system. By demonstrating the generation of these transparency windows one by one, we analyze the physical mechanism through which each transparency window forms in detail. Additionally, we discuss how the system param- eters affect the formation of transparency windows and conclude that the location, width, and absorption of each transparency window can be arbitrarily manipulated by varying the appropriate parameters. Moreover, when the pump field is changed from red to blue detuning, conversions between slow and fast light occur in the output field. These interesting properties of the output field can be applied to achieve the coherent control and manipulation of light pulses using cavity optomechanical system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. Vitali, S. Gigan, A. Ferreira, H. R. Böhm, P. Tombesi, A. Guerreiro, V. Vedral, A. Zeilinger, and M. Aspelmeyer, Phys. Rev. Lett. 98, 030405 (2007).

    Article  ADS  Google Scholar 

  2. A. Mari, and J. Eisert, Phys. Rev. Lett. 103, 213603 (2009), arXiv: 0911.0433.

    Article  ADS  Google Scholar 

  3. I. Wilson-Rae, N. Nooshi, W. Zwerger, and T. J. Kippenberg, Phys. Rev. Lett. 99, 093901 (2007).

    Article  ADS  Google Scholar 

  4. F. Marquardt, J. P. Chen, A. A. Clerk, and S. M. Girvin, Phys. Rev. Lett. 99, 093902 (2007).

    Article  ADS  Google Scholar 

  5. D. Y. Wang, C. H. Bai, S. Liu, S. Zhang, and H. F. Wang, Phys. Rev. A 98, 023816 (2018), arXiv: 1811.05645.

    Article  ADS  Google Scholar 

  6. H. Ian, Z. R. Gong, Y. Liu, C. P. Sun, and F. Nori, Phys. Rev. A 78, 013824 (2008), arXiv: 0803.0776.

    Article  ADS  Google Scholar 

  7. J. Q. Liao, and L. Tian, Phys. Rev. Lett. 116, 163602 (2016), arXiv: 1512.07609.

    Article  ADS  Google Scholar 

  8. M. Abdi, P. Degenfeld-Schonburg, M. Sameti, C. Navarrete-Benlloch, and M. J. Hartmann, Phys. Rev. Lett. 116, 233604 (2016), arXiv: 1602.07922.

    Article  ADS  Google Scholar 

  9. V. Macri, L. Garziano, A. Ridolfo, O. Di Stefano, and S. Savasta, Phys. Rev. A 94, 013817 (2016).

    Article  ADS  Google Scholar 

  10. H. Tan, Y. Wei, and G. Li, Phys. Rev. A 96, 052331 (2017).

    Article  ADS  Google Scholar 

  11. P. Rabl, Phys. Rev. Lett. 107, 063601 (2011), arXiv: 1102.0278.

    Article  ADS  Google Scholar 

  12. T. P. Purdy, P. L. Yu, R. W. Peterson, N. S. Kampel, and C. A. Regal, Phys. Rev. X 3, 031012 (2013), arXiv: 1306.1268.

    Google Scholar 

  13. Y. D. Wang, S. Chesi, and A. A. Clerk, Phys. Rev. A 91, 013807 (2015), arXiv: 1406.7829.

    Article  ADS  Google Scholar 

  14. X. B. Yan, Phys. Rev. A 96, 053831 (2017), arXiv: 1707.02228.

    Article  ADS  Google Scholar 

  15. M. Aspelmeyer, T. J. Kippenberg, and F. Marquardt, Rev. Mod. Phys. 86, 1391 (2014), arXiv: 1303.0733.

    Article  ADS  Google Scholar 

  16. H. Xiong, and Y. Wu, Appl. Phys. Rev. 5, 031305 (2018).

    Article  ADS  Google Scholar 

  17. G. S. Agarwal, and S. Huang, Phys. Rev. A 81, 041803 (2010), arXiv: 0911.4157.

    Article  ADS  Google Scholar 

  18. S. Weis, R. Riviere, S. Deleglise, E. Gavartin, O. Arcizet, A. Schliesser, and T. J. Kippenberg, Science 330, 1520 (2010), arXiv: 1007.0565.

    Article  ADS  Google Scholar 

  19. P. C. Ma, J. Q. Zhang, Y. Xiao, M. Feng, and Z. M. Zhang, Phys. Rev. A 90, 043825 (2014), arXiv: 1405.2410.

    Article  ADS  Google Scholar 

  20. S. Huang, J. Phys. B-At. Mol. Opt. Phys. 47, 055504 (2014), arXiv: 1301.5099.

    Article  ADS  Google Scholar 

  21. S. Huang, and G. S. Agarwal, Phys. Rev. A 81, 033830 (2010), arXiv: 0909.1862.

    Article  ADS  Google Scholar 

  22. G. S. Agarwal, and S. Huang, Phys. Rev. A 85, 021801 (2012), arXiv: 1109.4361.

    Article  ADS  Google Scholar 

  23. J. Q. Zhang, Y. Li, M. Feng, and Y. Xu, Phys. Rev. A 86, 053806 (2012), arXiv: 1208.0067.

    Article  ADS  Google Scholar 

  24. Q. Wang, J. Q. Zhang, P. C. Ma, C. M. Yao, and M. Feng, Phys. Rev. A 91, 063827 (2015), arXiv: 1506.00812.

    Article  ADS  Google Scholar 

  25. Y. Guo, K. Li, W. Nie, and Y. Li, Phys. Rev. A 90, 053841 (2014), arXiv: 1407.5202.

    Article  ADS  Google Scholar 

  26. Y. C. Liu, Y. F. Xiao, X. Luan, Q. Gong, and C. W. Wong, Phys. Rev. A 91,033818 (2015).

    Google Scholar 

  27. Y. M. Liu, C. H. Bai, D. Y. Wang, T. Wang, M. H. Zheng, H. F. Wang, A. D. Zhu, and S. Zhang, Opt. Express 26, 6143 (2018).

    Article  ADS  Google Scholar 

  28. D. Y. Wang, C. H. Bai, H. F. Wang, A. D. Zhu, and S. Zhang, Sci. Rep. 6, 24421 (2016), arXiv: 1512.06536.

    Article  ADS  Google Scholar 

  29. D. Y. Wang, C. H. Bai, H. F. Wang, A. D. Zhu, and S. Zhang, Sci. Rep. 6, 38559 (2016), arXiv: 1605.00736.

    Article  ADS  Google Scholar 

  30. A. Dalafi, M. H. Naderi, and A. Motazedifard, Phys. Rev. A 97, 043619 (2018), arXiv: 1802.10394.

    Article  ADS  Google Scholar 

  31. A. H. Safavi-Naeini, T. P. M. Alegre, J. Chan, M. Eichenfield, M. Winger, Q. Lin, J. T. Hill, D. E. Chang, and O. Painter, Nature 472, 69 (2011), arXiv: 1012.1934.

    Article  ADS  Google Scholar 

  32. B. Chen, C. Jiang, and K. D. Zhu, Phys. Rev. A 83, 055803 (2011).

    Article  ADS  Google Scholar 

  33. D. Tarhan, S. Huang, and E. Mustecaplöglu, Phys. Rev. A 87, 013824 (2013), arXiv: 1210.6830.

    Article  ADS  Google Scholar 

  34. C. Jiang, H. Liu, Y. Cui, X. Li, G. Chen, and B. Chen, Opt. Express 21, 12165 (2013), arXiv: 1301.1382.

    Article  ADS  Google Scholar 

  35. M. J. Akram, M. M. Khan, and F. Saif, Phys. Rev. A 92, 023846 (2015), arXiv: 1501.06062.

    Article  ADS  Google Scholar 

  36. Z. Wu, R. H. Luo, J. Q. Zhang, Y. H. Wang, W. Yang, and M. Feng, Phys. Rev. A 96, 033832 (2017), arXiv: 1705.06200.

    Article  ADS  Google Scholar 

  37. K. Totsuka, N. Kobayashi, and M. Tomita, Phys. Rev. Lett. 98, 213904 (2007).

    Article  ADS  Google Scholar 

  38. J. T. Hill, A. H. Safavi-Naeini, J. Chan, and O. Painter, Nat. Commun. 3, 1196 (2012), arXiv: 1206.0704.

    Article  ADS  Google Scholar 

  39. S. Camerer, M. Korppi, A. Jockel, D. Hunger, T. W. Hänsch, and P. Treutlein, Phys. Rev. Lett. 107, 223001 (2011), arXiv: 1107.3650.

    Article  ADS  Google Scholar 

  40. S. B. Shim, M. Imboden, and P. Mohanty, Science 316, 95 (2007).

    Article  ADS  Google Scholar 

  41. H. Okamoto, A. Gourgout, C. Y. Chang, K. Onomitsu, I. Mahboob, E. Y. Chang, and H. Yamaguchi, Nat. Phys. 9, 480 (2013), arXiv: 1212.3097.

    Article  Google Scholar 

  42. M. Spletzer, A. Raman, A. Q. Wu, X. Xu, and R. Reifenberger, Appl. Phys. Lett. 88, 254102 (2006).

    Article  ADS  Google Scholar 

  43. B. P. Hou, L. F. Wei, and S. J. Wang, Phys. Rev. A 92, 033829 (2015).

    Article  ADS  Google Scholar 

  44. W. Gu, and Z. Yi, Opt. Commun. 333, 261 (2014).

    Article  ADS  Google Scholar 

  45. H. Jing, K. Özdemir, Z. Geng, J. Zhang, X. Y. Lu, B. Peng, L. Yang, and F. Nori, Sci. Rep. 5, 9663 (2015).

    Article  Google Scholar 

  46. A. Sohail, Y. Zhang, J. Zhang, and C. Yu, Sci. Rep. 6, 28830 (2016), arXiv: 1606.05866.

    Article  ADS  Google Scholar 

  47. W. Li, Y. Jiang, C. Li, and H. Song, Sci. Rep. 6, 31095 (2016).

    Article  ADS  Google Scholar 

  48. M. J. Hartmann, F. G. S. L. Brandao, and M. B. Plenio, Laser Photon. Rev. 2, 527 (2008), arXiv: 0808.2557.

    Article  ADS  Google Scholar 

  49. C. H. Bai, D. Y. Wang, H. F. Wang, A. D. Zhu, and S. Zhang, Sci. Rep. 6, 33404 (2016), arXiv: 1602.00781.

    Article  ADS  Google Scholar 

  50. C. H. Bai, D. Y. Wang, H. F. Wang, A. D. Zhu, and S. Zhang, Sci. Rep. 7, 2545 (2017).

    Article  ADS  Google Scholar 

  51. Y. Xing, L. Qi, J. Cao, D. Y. Wang, C. H. Bai, W. X. Cui, H. F. Wang, A. D. Zhu, and S. Zhang, Opt. Express 26, 16250 (2018), arXiv: 1811.06167.

    Article  ADS  Google Scholar 

  52. D. F. Walls, and G. J. Milburn, Quantum OPtics (Springer Science & Business Media, Berlin/Heidelberg, 2007).

    MATH  Google Scholar 

  53. S. Gröblacher, K. Hammerer, M. R. Vanner, and M. Aspelmeyer, Nature 460, 724 (2009), arXiv: 0903.5293.

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Shou Zhang, Cheng-Shou An or Hong-Fu Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zheng, MH., Wang, T., Wang, DY. et al. Manipulation of multi-transparency windows and fast-slow light transitions in a hybrid cavity optomechanical system. Sci. China Phys. Mech. Astron. 62, 950311 (2019). https://doi.org/10.1007/s11433-018-9341-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11433-018-9341-3

Keywords

Navigation